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PINK1 expression increases during brain
development and stem cell differentiation,
and affects the development of GFAP-
positive astrocytes
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Abstract

Background: Mutation of PTEN-induced putative kinase 1 (PINK1) causes autosomal recessive early-onset
Parkinson'’s disease (PD). Despite of its ubiquitous expression in brain, its roles in non-neuronal cells such as neural
stem cells (NSCs) and astrocytes were poorly unknown.

Results: We show that PINK1 expression increases from embryonic day 12 to postnatal day 1 in mice, which
represents the main period of brain development. PINKT expression also increases during neural stem cell (NSC)
differentiation. Interestingly, expression of GFAP (a marker of astrocytes) was lower in PINKT knockout (KO) mouse
brain lysates compared to wild-type (WT) lysates at postnatal days 1-8, whereas there was little difference in the
expression of markers for other brain cell types (e.g., neurons and oligodendrocytes). Further experiments showed
that PINK1-KO NSCs were defective in their differentiation to astrocytes, producing fewer GFAP-positive cells
compared to WT NSCs. However, the KO and WT NSCs did not differ in their self-renewal capabilities or ability to
differentiate to neurons and oligodendrocytes. Interestingly, during differentiation of KO NSCs there were no
defects in mitochondrial function, and there were not changes in signaling molecules such as SMAD1/5/8, STAT3,
and HES1 involved in differentiation of NSCs into astrocytes. In brain sections, GFAP-positive astrocytes were more
sparsely distributed in the corpus callosum and substantia nigra of KO animals compared with WT.

Conclusion: Our study suggests that PINK1 deficiency causes defects in GFAP-positive astrogliogenesis during brain

development and NSC differentiation, which may be a factor to increase risk for PD.
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Background

PTEN-induced putative kinase 1 (PINK1) is a PD-
related gene whose mutation causes an autosomal reces-
sive early-onset PD [1]. PINK1 plays diverse roles. For
example, it regulates mitochondrial function [2], which
is linked to ATP generation, oxygen consumption [3-5],
and ROS production [6]. In addition, PINK1 regulates
the AKT-mTOR and HIF-1 alpha pathways to mediate
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proliferation, survival, metabolism, and inflammation
etc. [7-12]. Finally, PINK1 deficiency reportedly reduces
astrocyte proliferation [7] and neurite outgrowth [13],
suggesting that this deficiency may affect brain develop-
ment and/or injury repair.

Astrocytes, which are the most abundant cells in the
brain, express glial fibrillary acidic protein (GFAP) and
are known to play important roles in developing, intact,
and injured brains. Astrocytes regulate synaptogenesis
[14], neural activity, and neural circuit formation in both
developing and injured brains [15-17]. In intact brain,
astrocytes support neurons by providing nutrients and
growth factors [18-20], and maintaining the homeostasis
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of extracellular potassium and glutamate [21, 22]. In
injured brain, astrocytes become hypertrophic, exhibit
increased GFAP expression, and proliferate, thereby isolat-
ing injury sites, preventing oxidative stress and neuronal
death, and decreasing inflammation [23-28]. The neural
stem cells (NSCs) in the subventricular zone (SVZ) of the
brain are a specialized form of GFAP-expressing astro-
cytes [29] that contributes to injury repair. In ischemic
brain, it was recently reported that astrocytes differentiate
into new neurons and participate in regenerating the
injured brain [30]. Therefore, defects of astrogliogen-
esis could cause brain abnormalities, including neuro-
degeneration [31].

In this study, we show that PINK1 expression increases
during brain development and NSC differentiation,
whereas PINK1 deficiency decreases GFAP expression
during these processes. Subsequent experiments revealed
that PINK1 deficiency causes defects in astrogliogenesis,
decreasing the number of GFAP-positive astrocytes and
causing abnormalities in their locations and configurations
in the corpus callosum, and substantia nigra reticulate.
Collectively, these findings suggest that defects in
GFAP-positive astrogliogenesis could be a mechanism
through which PINK1 deficiency could contributes to
the development of PD.

Results

The expression levels of PINK1 increase during brain
development, and GFAP expression is attenuated in
PINK1-deficient mouse brains

Since PINK1 is closely associated with the signaling
pathways that regulate cell proliferation, survival, and
differentiation [7-9], we first examined the expression
levels of PINK1 during brain development during a
period characterized by the vigorous proliferation and
differentiation of brain cells. Brain lysates were prepared
from samples taken on embryonic day 11.5 (E11.5)
through E17.5, as well as on postnatal day 1 (P1), P7,
and at 8 weeks after birth. The protein expression of the
neuronal marker, TUJ-1, gradually increased from E11.5
to adulthood and, as previously reported [32], the astro-
cyte marker, GFAP, appeared at around P1 (Fig. la).
The oligodendrocyte marker, myelin basic protein
(MBP), was not detected up to P7, but could be de-
tected at 8 weeks (Fig. la). Interestingly, the PINK1
protein expression levels showed some correlation with
brain development, increasing from E11.5 to a peak at
E17.5 and P1, and then decreasing at P7 and 8 weeks
(Fig. 1a). The mRNA levels of PINK1 showed a similar
expression pattern, gradually increasing from E11.5 to a
peak at P1, and then decreasing at P7 and 8 weeks
(Fig. 1b). We also found that protein expression of Parkin,
another PD gene [33], showed similar patterns to that of
PINK1 (Additional file 1: Figure S1).
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Since PINKI1 expression was upregulated during brain
development, particularly during the period when the
expression levels of TUJ1 and GFAP were also increased
(Fig. 1la, b), we questioned whether PINK1 could be
functionally associated with the expression levels of
TUJ1 and/or GFAP. Accordingly, we compared the ex-
pression levels of GFAP, TUJ1, and MAP2 (another
marker of neurons) in WT and PINKI-knockout (KO)
brains at P1, P8, and 8 weeks. Using Western blot, we
confirmed absence of PINK1 protein expression in
PINK1 KO mice (Additional file 2: Figure S2). The
PINK1 deficiency in PINK1-KO mice was usually con-
firmed using genotyping prior to the preparation of
brain lysates as previously described [34]. Interestingly,
we found that GFAP protein levels in PINK1-KO brain
were lower than in WT brain at P1 and P8, whereas
there was little difference in the levels of TUJ1 and
MAP2 (Fig. 1c). At 8 weeks, however, there was no sig-
nificant difference in the levels of GFAP as well as TUJ1
or MAP2 in WT and PINK1-KO brains (Fig. 1c). These
results suggest that PINK1 regulates brain development,
particularly, GFAP expression.

The expression levels of PINK1 increase during NSC
differentiation, and GFAP expression is attenuated in
PINK1-deficient NSCs in vitro

Since GFAP expression differed in WT and KO during
brain development (Fig. 1c), we examined whether
PINK1 regulates the proliferation and/or differentiation
of NSCs obtained from E13.5 mouse brains. The NSCs
were cultured as neurospheres, and their proliferative
capacity was assessed by counting the number and size
of secondary neurospheres, measuring [*H]-thymidine
incorporation, and assessing the cell numbers. We previ-
ously reported that PINK1 regulates astrocyte prolifera-
tion [7]. However, proliferation defect was not found in
PINK1-KO NSCs since the number and size of neuro-
spheres derived from WT and PINK1-KO NSCs were
similar (Fig. 2a and b). Additionally, the cell numbers
and [*H]-thymidine incorporation level did not signifi-
cantly differ between WT and PINK1-KO NSCs (Fig. 2¢
and d), and the proliferation capacities of WT and
PINK1-KO NSCs did not significantly differ even at a
later passage (passage 8) (Fig. 2e).

We further examined whether PINK1 regulates NSC
differentiation. Interestingly, the mRNA and protein
levels of PINK1 significantly increased during differenti-
ation into neurons and astrocytes, as demonstrated by
increases in MAP2, TUJ1, and GFAP after 1-5 days of
differentiation, and a decrease in nestin (an NSC
marker) expression beginning after 1 d of differentiation
(Fig. 3a, b). As in developing brain, Parkin protein ex-
pression also increased during differentiation of NSCs
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Fig. 1 PINKT expression increased during brain development, and PINK1 deficiency caused defects in GFAP expression. a, b Mouse brains were
collected at the indicated ages. The levels of a neuron marker (TUJ1), an astrocyte marker (GFAP), an oligodendrocyte marker (MBP), and PINK1
were assayed by Western blotting, with GAPDH used as the loading control (a). The mRNA levels of PINKT during brain development were
determined using Q-PCR (b). ¢ At postnatal day 1, postnatal day 8 and 8 weeks, whole brains from WT and PINK1-KO mice were collected and
GFAP, TUJ-1, and MAP2 protein levels were analyzed by Western blotting. The band intensities of GFAP, TUJT and MAP2 were quantified and
normalized with respect to that of GAPDH. The data shown are representative of two independent experiments (a, b). Values in (b, ) are
means + SEMs of at least four samples (**, P<0.01)

similar to PINKI1 protein expression (Additional file 3: and CNPase revealed that there were significantly fewer
Figure S3). GFAP-positive cells among PINK1-KO NSCs compared
We next compared the differentiation patterns of WT  to WT NSCs on day 5 of differentiation (17.7 % vs. 6.8 %),
and PINK1-KO NSCs. During the induction of NSC dif-  whereas the numbers of MAP2- (43.1 % vs. 42.4 %) and
ferentiation, the protein levels of MAP2 and TUJ1 were = CNPase-positive cells (4.8 % vs. 4.3 %) were not signifi-
similar in WT and PINK1-KO (Fig. 3c). However, GFAP  cantly different (Fig. 3e). Collectively, these results suggest
protein levels were significantly lower in PINK-1 KO  that PINK1 is required for the differentiation of NSCs into
cells compared to WT NSCs on days 3 and 5 of differen-  GFAP-positive astrocytes.
tiation (Fig. 3c). The decrease was not due to cell death,
as indicated by similar levels of cleaved PARP, cleaved Neither GFAP mRNA expression nor signaling pathways
caspase-3, and LDH between WT and PINK1-KO NSCs involved in gliogenesis are changed in PINK1-deficient
(Additional file 4: Figure S4). We also examined differ- NSCs
entiation of NSCs in the presence of CNTE, a well In an effort to identify the mechanisms responsible for
known strong inducer of astrocyte differentiation [35].  decreasing the differentiation of PINK1-KO NSCs into
On day 5 of differentiation, CNTF dose-dependently (in ~ GFAP-positive astrocytes, we examined the activation
the range of 0.1-1 ng/ml) increased the differentiation levels of the signaling molecules involved in astroglio-
of NSCs into astrocytes, as demonstrated by GFAP ex-  genesis, including STAT3 [36-38], SMAD1/5/8 [39],
pression (Fig. 3d). Furthermore, the GFAP protein level and HES1 [40]. The activation of these molecules are
was lower in PINK1-KO NSCs than in WT NSCs (Fig. 3d).  evaluated by phosphorylation (SMAD1/5/8 and STAT3)
Immunostaining with antibodies specific for GFAP, MAP2  [41, 42], or expression (HES1) [43]. Unexpectedly, however,
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Fig. 2 PINK1 deficiency did not affect the self-renewal or proliferation capacities of NSCs. a, b The secondary neurosphere formation ability was
assayed in WT and PINK1-KO NSCs. Dissociated primary neurospheres (2 x 10* cell/well) were seeded to a 96-well plate in the presence of EGF
(20 ng/ml) and FGF (20 ng/ml). On day 3 of seeding, the sizes and numbers of secondary neurospheres were analyzed. ¢, d NSC proliferation was
determined by counting of cell numbers (c) and measurement of [3H]—thymidine incorporation (d). Dissociated NSCs were plated to 24-well plates

coated with poly-L-ornithine and fibronectin (1 x 10° cell/well) in the presence of EGF and FGF. On the following day, 1 uCi/ml [*H}-thymidine
was added with growth factors, and the plates were incubated for an additional 24 h. Finally, the NSCs were washed with PBS and lysed with
0.1 N NaOH, and radioactivity was determined using a f-counter. @ WT and PINK1-KO NSCs were subcultured every 3-4 days after neurosphere
formation in the presence of 20 ng/ml EGF and FGF until passage 8. At each passage, the number of cells was counted. Values in (b, c) are
means + SEMs of at least three samples. Scale bar in (a), 200 um. The data shown are representative of at least three independent experiments

there was no difference in the levels of pPSMAD1/5/8,
pSTAT3, and HES1 (Fig. 4a, b), even in the presence of
CNTF (Fig. 4d). Accordingly, mRNA levels of GFAP did
not differ significantly in WT and PINK1-KO NSCs during
differentiation in the absence (Fig. 4c) and presence of
CNTF (Fig. 4e), suggesting that PINK1 dose not regulate
GEFAP expression at transcriptional level.

In further studies, we examined the effect of prote-
asome inhibitors, MG132 and lactacystin, on GFAP ex-
pression. However, these inhibitors also had little effect
on GFAP expression (Additional file 5: Figure S5), sug-
gesting that PINK1 did not alter the protein stability of
GFAP. Therefore, further studies are required to assess
how PINK1 regulates GFAP expression and/or the gen-
eration of GFAP-positive astrocytes.

Mitochondrial defects were not found in PINK1 deficient
NSCs during differentiation

Next, we examined the possible involvement of mito-
chondrial dysfunction in abnormal astrogliogenesis in
PINK1 deficient NSCs, since we and others have found

that PINK1 deficiency causes mitochondrial dysfunctions
in neurons and astrocytes [2, 7, 44]. However, mitochon-
drial dysfunction was not detectable in PINK1 KO NSCs
for up to 5 days after the induction of differentiation.
WT and KO NSCs did not significantly differ in their
mitochondrial membrane potential or ROS production,
as measured by FACS analysis using MitoTracker Red
CMXRos and carboxyl-H,DFFDA, respectively (Fig. 5a).
In addition, the mitochondrial DNA copy number did not
differ between WT and PINK1-KO NSCs (Fig. 5b). These
findings suggest that PINK1 may not be required for nor-
mal mitochondrial function in NSCs differentiation.

Differences in the distribution of GFAP-positive cells in
the lateral ventricle and/or substantia nigra (SN) of WT
and PINK1-KO mice

Next, we analyzed GFAP-positive astrocytes in several
regions of WT and PINK1-KO mouse brains, including
the lateral ventricles (Fig. 6a, b, ¢) and SN, where dopa-
minergic neuronal processes and cell bodies locate (Fig. 6a,
d, e). In the cortex of P8 mice, GFAP immunoreactivity
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Fig. 3 PINKT expression increased during differentiation of NSCs, and its deficiency caused defects in GFAP-positive astrocyte differentiation. NSCs
(15 % 10° cell/well) were prepared from E135 WT and PINK1-KO mouse embryo brain and seeded to 6-well plates coated with poly-L-omithine/fibronectin.
Differentiation was induced by withdrawal of EGF and FGF. a, b At the indicated times after induction of differentiation, protein levels of Nestin, MAP2,
TUJ-1, and GFAP (a), and protein and mRNA levels of PINK1 (b) were assayed, and the results were quantified (b). ¢ The differentiation capacities of WT
and PINK1-KO NSCs into astrocytes (GFAP) and neurons (TUJ-1 and/or MAP2) were analyzed by Western blot (left panel) and quantified (right panel).

d The differentiation capacities of WT and PINKT KO NSCs into astrocytes (GFAP) were analyzed in the presence of CNTF by Western blot (left panel)

and quantified (right panel) on day 5 of differentiation. GAPDH or actin was used as the loading control. e On day 5 of differentiation, cells were
immunostained for cell-type-specific markers, neuron (MAP2), astrocyte (GFAP), and oligodendrocytes (CNPase) (left panel). Images were taken using a
Zeiss microscope, and the number of each type of cells was counted using the Image J software, and plotted (right panel). Scale bar in (), 50 um. Values
in (b, ¢, d, and e) are means + SEMs of at least three samples (**, P < 0.01). The data shown are representative of at least three independent experiments

J

was detectable in the pia mater (arrowheads in Fig. 6b1  analysis using Image ] (f) and western blot using
and cl) and the thin processes beneath this structure (ar-  brain lysates prepared from each brain regions (g)
rows in Fig. 6b1 and c1), but these processes were thicker ~ showed decrease in GFAP expression in PINK1 KO brain.
and longer in PINK1-KO brains (arrows in Fig. 6b1 and  Taken together, these results indicate that GFAP-positive
cl). Interestingly, the morphology and/or distribution of astrocytes developed abnormally in PINKI-deficient
GFAP-positive astrocytes in WT and KO mice differed in  mouse brains and NSCs.

the corpus callosum (CC); in particular, the point at which

the dorsal horn (dh) of the lateral ventricle (which was not  Discussion

yet fully developed at this stage) connected to the CC was  The results of this study show that PINK1 expression
filled with GFAP-immunoreactive cells in WT but not in  increases during brain development and NSC differenti-
KO mice (arrows in Fig. 6b2 and c2). Finally, the P8 SN ation, and that this increase is related to changes in
was densely populated with GFAP-immunoreactive astro- ~ GFAP expression during these two processes. Further-
cytes in WT brains, but only sparsely populated with these  more, PINK1 deficiency decreased the differentiation of
astrocytes in KO brains (arrows in Fig. 6d and e). Image  NSCs into GFAP-positive astrocytes, and caused defects
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Fig. 4 PINK1 deficiency did not affect GFAP mRNA expression or the signaling pathways involved in astrocyte differentiation. a, b The levels of
proteins known to be involved in astrocyte differentiation-related pathways (e.g., p-SMAD1/5/8, p-STAT3, and HES1) were measured by Western
blotting (a). GAPDH was used as the loading control. The band intensities of p-SMAD1/5/8, p-STAT3, and HES1 were quantified in (b). ¢ GFAP
mMRNA levels were measured in WT and PINK1-KO NSCs using Q-PCR on days 0, 1, 3, and 5 of differentiation. d, @ WT and PINK1-KO NSCs were
differentiated in the presence of 0.1 ng/ml CNTF for 5 days. p-STAT3 levels were compared after the indicated durations of differentiation (d), and
GFAP mRNA levels were examined on day 3 of differentiation (e). Values are means + SEM of at least four samples (b, c, e)

in the location and/or distribution of GFAP-positive as-
trocytes in the SVZ and/or SN.

In injured brain, SVZ-NSCs migrate toward injury
sites and differentiate into astrocytes as well as neurons
[45-49]. Astrocytes contribute to restoring disrupted
extracellular fluid homeostasis and repairing the injured
brain: astrocytes increase expression of glutamate and
potassium transporters [25, 26], facilitate axon regener-
ation [50-52], constitute a part of the neurogenic niche
[53-55], and affect neurogenesis [56, 57]. Accordingly, in
ischemic brain, disruption of the differentiation of SVC-
NSCs to astrocytes induces abnormal astrogliosis, which
results in an exaggerated microvascular hemorrhage [46].
Therefore, defects in astrogliogenesis and/or astrocyte
functions can decrease neuronal support and impair the
repair of injured brain, potentially leading to gradual neur-
onal death and accumulation of damage, which results in
neurodegenerative diseases [31, 58—61].

Next arising question was how PINK1 decreases differ-
entiation of PINK1-KO NSCs into GFAP-positive astro-
cytes. We excluded the possible involvement of cell
death in the decreased differentiation of PINK1-KO
NSCs into GFAP-positive astrocytes, as assessed by the
amounts of cleaved PARP, cleaved caspase-3, and LDH
release (Additional file 4: Figure S4). Additionally, PINK1
deficiency did not switch the balance of NSC differenti-
ation from neurogenesis to gliogenesis, since the number
of TUJ-1-positive cells did not increase (Fig. 3c, e). During
differentiation of WT and PINK1-KO NSCs, mRNA levels
of GFAP did not differ significantly (Fig. 4c), and the

activation levels of the signaling pathways involved in glio-
genesis, such as STAT3 [36-38], SMAD1/5/8 [39], and
HES1 [40] were also little different (Fig. 4b). Furthermore,
mitochondrial dysfunction that has been found in PINK1
deficient neurons and astrocytes [2, 7, 44] was not detect-
able in PINK1-KO NSCs before and after the induction of
differentiation (Fig. 5). Although mitochondrial dysfunc-
tion retarded proliferation of PINK1 deficient astrocytes
[7], the proliferation of PINK1-KO NSCs may be normal
based on their normal mitochondrial function (Fig. 2).
These findings suggest that PINK1 may not be required for
normal mitochondrial function in NSCs differentiation
and/or that other genes may substitute for PINK1 in this
case. It is also possible that PINK1-induced mitochondrial
defects may accumulate in an age-dependent manner.
Since GFAP mRNA expression was not reduced at
PINK1-KO NSCs, we further examined the effect of
proteasome inhibitors, MG132 and lactacystin, on GFAP
expression (Additional file 5: Figure S5). Interestingly,
these inhibitors had little effect, suggesting that PINK1
did not alter the protein stability of GFAP. Recently, it has
been reported that several PD genes may regulate protein
translation [62]. Therefore, further studies should be done
to assess whether PINK1 may regulate GFAP expression
at translation levels.

The importance of glia in the maintenance of brain
function is beyond question, and their loss and/or ab-
normal function can contribute to neurodegeneration
[63]. Our group and others have reported that mutations
in several PD genes can alter the functions of astrocytes
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and other brain cells, including NSCs and microglia. For
example, mutation of DJ-1 attenuates the neuroprotec-
tive functions of astrocytes [64]. Studies have shown that
the inflammation and endocytosis of astrocytes and
microglia can be regulated by DJ-1, PINK1, and LRRK2
[65—67], while the proliferation capacity of astrocytes is
regulated by PINK1 [7], and LRRK2 mutation affects
the viability of stem cells [68]. In this study, we found
that Parkin similar to PINK1 changed its expression
during development of the brain and NSC differentiation
(Additional file 1: Figure S1, Additional file 3: Figure S3)
although both Parkin and PINK1 in monkey are decreased
or remain unchanged during aging [69]. Taken together,
these lines of evidence suggest that PD does not affect
only neurons, but rather is also a disease of other
brain cells, including astrocytes and NSCs.

Conclusion

In conclusion, we herein provide the first evidence that
PINK1 deficiency causes defects in the differentiation of
NSCs to astrocytes and/or delay in GFAP expression
and/or development of GFAP-expressing cells. Since as-
trocytes play critical roles in neuronal survival and the
repair ininjured brain, insufficient astrocytic support due
to PINKI deficiency may cause neuronal death and/or
abnormal tissue repair of the injured brain, accumulating
damage and increasing the risk of PD. These possibilities

imply that neurodegenerative diseases, including PD,
could be diseases of astrocytes as well as neurons.
Therefore, the functional regulation of non-neuronal
cells should be a new target for the development of ther-
apies for PD.

Methods

Animals

The PINK1-deficient mice were a generous gift from Dr.
Xiaoxi Zhuang (Chicago University) and Dr. UJ Kang
(Columbia University), and were as previously described
[7]. All animal procedures were approved by the Ajou
University School of Medicine Ethics Review Committee
for Animal Research (Amc-119).

Neurosphere culture and cell counting

Embryonic neurospheres were cultured from the brains
of embryonic day 13.5 (E13.5) mice, as previously de-
scribed [70]. Briefly, forebrains were freed of meninges
and gently triturated several times in culture medium
using a flame-polished Pasteur pipette. Cells from a sin-
gle brain were plated in a 100-mm Petri dish and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)/
F12 medium (WelGene, Daegu, Korea) supplemented
with N-2, B27 supplement (Gibco-Invitrogen, Carlsbad,
CA, USA), 20 ng/ml EGF, and bFGF (BD Bioscience,
San Jose, CA, USA). EGF and bFGF were added every
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Fig. 6 PINK1 deficiency alters GFAP expression in the cortex and midbrain of 8-day-old mice. Coronal sections were obtained from 8-day-old
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WT and PINK1 KO mice, stained with GFAP antibodies, and visualized with peroxidase-conjugated secondary antibodies. a Positions of sections
presented in (b-e) are indicated. b, ¢ In the cortex, the pia mater was strongly stained with anti-GFAP antibodies in both WT and KO sections
(arrowheads in b1 and c1, respectively). The GFAP-positive processes underneath the pia mater were thinner in WT samples (arrows in b1) than
in KO samples (arrows in c1). The region where the dorsal horn (dh) of the lateral ventricle connected to the corpus callosum (CC) was strongly
immunoreactive for GFAP in WT sections but not in KO sections (arrows in b2 and c2, respectively). d, @ The SN in the midbrain of WT mice was
less compactly filled with GFAP positive processes in KO sections compared with WT sections (arrows in d and e, respectively). Images
were captured by a microscope (Zeiss). f Images were analyzed using Image J. Scale bar, 1 mm (upper panel in b-e), 100 um (middle
and lower panel in b-e). g Brain lysates were prepared from each region (cortex, CC: corpus callosum, SN: substantia nigra) shown in the
above panel, and GFAP levels were analyzed with western blot. Each number indicates different animal (left panel). Band intensities were
measured and plotted (right panel). The data shown are representative of at least three different animals. Values in (f and g) are means + SEM of four

samples. (¥, P<0.01; **, P<0.01)
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2 days. For serial neurosphere formation, primary neu-
rospheres were collected, incubated with Accumax
(Millipore), and dissociated. For differentiation, dissoci-
ated cells were seeded on plates coated with 0.2 mg/ml
poly-L-ornithine and 1 pg/ml fibronectin (Sigma) in the
absence of growth factors or in the presence of CNTF
(BD Bioscience).

For proliferation assays, dissociated primary neuro-
spheres (2x10* cell/well) were seeded to a 96-well plate
and incubated in the presence of EGF and bFGF for
3 days, and the sizes and numbers of secondary neuro-
spheres were analyzed using the TINA software (Raytest,
Straubenhardt, Germany). For the cell counting and

[*H]-thymidine incorporation assays, dissociated primary
neurospheres (1 x 10> cell/well) were seeded to a poly-
L-ornithine- and fibronectin-coated 24-well plate in the
presence of growth factors (added daily to prevent NSC
differentiation). For cell counting, on the indicated day,
adherent NSCs were incubated with Ca**/Mg**-free
HBSS for 20 min, detached by pipetting, and counted.
For the thymidine incorporation assay, 1 uCi/ml [*H]-
thymidine was added on day 1 of culture. After 24 h, the
adherent NSCs were washed three times with PBS and
lysed with 0.1 N NaOH. Radioactivity was determined
using a B-counter (Packard Instruments, Downers Grove,
IL, USA).
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Western blot analysis

Cells and mouse brains were lysed on ice in RIPA buffer
(50 mM Tris-HCl, pH 74, 1 % NP-40, 0.25 % Na-
deoxycholate, 150 mM NaCl, 1 mM NazVO,, and 1 mM
NaF) containing protease inhibitors (2 mM phenylmethyl-
sulfonyl fluoride [PMSF], 10 pg/ml leupeptin, 10 pg/ml
pepstatin, and 2 mM EDTA) and a phosphatase inhibitor
cocktail (GenDEPOT, Barker, TX, USA). Proteins were
separated by SDS-PAGE, transferred to nitrocellulose
membranes, and identified using specific antibodies. The
antibodies for PINK1 (Cat. NO. 23707), MAP2, and MBP
were obtained from Abcam (Cambridge, MA, USA); for
Parkin, p-SMAD1/5/8, and p-STAT3 from Cell signaling
technology (Danvers, MA, USA); for nestin and CNPase
from Millipore (Bedford, MA, USA); for TUJ-1 from
Covance (Berkeley, CA, USA); for GFAP from Sigma
(Cat. No. G3893; St. Louis, MO, USA); and for HES1
and GAPDH from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Membranes were incubated with
peroxidase-conjugated secondary antibodies (Jackson
Immuno Research, West Grove, PA, USA), and visualized
with an enhanced chemiluminescence system (Daeil Lab
Inc., Seoul, Korea).

Q-PCR

Total RNA was isolated using RNAzol B (iNtRON,
Sungnam, Korea), and ¢cDNA was prepared using Avian
Myeloblastosis Virus reverse transcriptase (Promega,
Madison, WI, USA) according to the manufacturer’s in-
structions. The relevant mRNA levels were measured
using a KAP SYBR FAST qPCR kit (Kapa Biosystems,
Boston, MA, USA) and a RotoGene thermocycler (Corbett
Research, Sydney, Australia). The primer pairs used in this
study were synthesized by Integrated DNA Technologies
(Coralville, IA, USA) and were as follows: PINK1, 5-GC
TTGCCAATCCCTTCTATG-3’ (sense) and 5-CTCTCGC
TGGAGCAGTGAC-3' (antisense); GFAP, 5-AGCTAGC
CCTGGACATCGAGA-3(sense) and 5-GGTGAGCCTG
TATTGGGACAA-3'(antisense); GAPDH (reference house-
keeping gene), 5-GCCTTCCGTGTTCCTACC-3 (sense)
and 5-CCTCAGTGTAGCCCAAGATG-3" (antisense).
The cycle thresholds (Ct) for the PINK1 and GFAP gene
transcripts were normalized to the average Ct for
GAPDH, and the relative quantitation of normalized
transcript abundance was determined using the com-
parative Ct method (AACt), as described by the manu-
facturer (Kapa Biosystems, Boston, MA, USA).

Tissue preparation for immunostaining

Mice were anesthetized and transcardially perfused with
saline solution containing 0.5 % sodium nitrate and hep-
arin (10 Unit/ml), and then with 4 % paraformaldehyde in
0.1 M phosphate buffer (PB, pH 7.4). Brains were obtained
and post-fixed overnight at 4 °C in 4 % paraformaldehyde.
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Fixed brains were stored at 4 °C in a 30 % sucrose solution
until they sank. Series of coronal sections (30 um) were
obtained with a cryostat (Leica, Wetzlar, Germany), and
used for immunohistochemistry.

Immunostaining

For 3, 3'-diaminobenzidine (DAB) staining, brain sec-
tions were rinsed three times with PBS, treated with 3 %
H,O, for 5 min, and rinsed with PBS containing 0.2 %
Triton X-100 (PBST). Non-specific binding was blocked
with 1 % BSA in PBST. Sections were incubated over-
night at room temperature with primary antibodies spe-
cific for GFAP (Neuromics, Minneapolis, MN, USA; Cat.
No. RA22101). The sections were then rinsed with
PBST, incubated with biotinylated secondary antibodies
(Vector Laboratories, Burlingame, CA, USA), and visual-
ized as described by the manufacturer (Vector Laborator-
ies). Sections were mounted on gelatin-coated slides, and
examined under bright field microscopy (Olympus
Optical, BX51, Tokyo, Japan).

Cells were fixed with 4 % paraformaldehyde at room
temperature for 20 min, washed with PBS, and incu-
bated with 1 % BSA and 0.1 % Triton X-100 in PBS for
30 min. The cells were then incubated overnight with
anti-GFAP, -TUJ-1, -MAP2, and -CNPase antibodies at
4 °C, washed with PBS, and incubated with fluorescein-
conjugated secondary antibodies (Invitrogen) for 2 h.
Finally, the cells were washed, mounted using a mounting
medium containing 4, 6-diamidino-2-phenylindole (DAPI;
Vector Laboratories), and examined under an Axiovert
200 M microscope (Carl Zeiss, Gottingen, Germany).

Measurement of mitochondrial-membrane potential and
intracellular reactive oxygen species

NSCs were plated in 6-well plates (1.5 x 10° cells/well).
Mitochondrial membrane potential and intracellular re-
active oxygen species (ROS) were monitored by loading
cells for 30 min with 125 nM MitoTracker Red CMXRos
and 10 uM carboxyl-H2DFEDA, respectively, as described
previously [71]. Cells were washed twice with PBS and de-
tached with Cellstripper TM (Media Tech, Inc., Manassas,
VA, USA). Fluorescence intensities of detached cells were
analyzed with a fluorescence-activated cell sorter (FACS;
B-D FACS Systems, Sunnyvale, CA, USA).

Measurement of mitochondrial DNA

For assessment of the mitochondrial DNA copy number,
genomic DNA was isolated using an Exgene Cell SV kit
(GeneAll, Seoul, Korea), and the content of mitochondrial
DNA relative to that of nuclear DNA was measured as the
ratio of the mitochondrial D-loop (mito-D-loop) to the
nuclear-encoded GAPDH gene, using Q-PCR. A Roto-
Gene thermocycler (Corbett Research, Sydney, Australia)
was used with a KAP SYBR FAST qPCR kit (Kapa
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Biosystems, Boston, MA, USA), and the following primer
pairs: mito-D-loop, 5- CCC AAG CAT ATA AGC TAG
TAC-3’ (sense) and 5- ATA TAA GTC ATA TTT TGG
GAA CTA C -3’ (antisense); and GAPDH, 5-GCCTTCC
GTGTTCCTACC-3 (sense) and 5-CCTCAGTGTAGCC
CAAGATG-3 (antisense). The cycle threshold (Ct) for
the mito-D-loop transcript was normalized to the average
Ct for GAPDH in each reaction. Relative quantification of
normalized transcript abundance was performed using the
comparative Ct method (AACt).

Statistical analysis

All data presented in this study are representative of at
least three independent experiments. The statistical sig-
nificance of differences between mean values of two
groups was assessed by the Student’s t-test. For compari-
sons of more than two groups, we used one-way ANOVA
with Duncan’s post-hoc test.

Additional files

Additional file 1: Figure S1. Parkin expression increased during brain
development. Mouse brain lysates were collected at the indicated ages.
The levels of Parkin were assayed by Western blotting. As PINK1, Parkin
expression increased. (TIF 79 kb)

Additional file 2: Figure S2. Confirmation of absence of PINK1
protein in PINK1 KO mice. Cell lysates were prepared from NSCs on
day 5 of differentiation. PINK1 expression was analyzed with Western-blot.
(TIF 61 kb)

Additional file 3: Figure S3. Parkin expression increased during NSC
differentiation. Cell lysates were collected on day of differentiation of
NSCs. The levels of Parkin were assayed by Western blotting. As PINKT,
Parkin expression increased. The data shown are representative of at least
three independent experiments. (TIF 68 kb)

Additional file 4: Figure S4. PINK1 deficiency did not affect the
viability of NSCs during differentiation. (a) The viability of WT and
PINK1-KO NSCs was examined by Western-blotting of cleaved PARP and
cleaved caspase-3 on day 5 of differentiation. GAPDH was used as the
loading control. The band intensities of PARP and caspase-3 were quantified
(right panel). (b) LDH release was measured with an LDH-Cytotoxicity

Assay Kit (Biovision, Mountain View, CA, USA). Data are presented as the
means + SEM of three samples. The data shown are representative of at
least three independent experiments. (TIF 113 kb)

Additional file 5: Figure S5. Blocking of protein degradation does not
increase GFAP protein levels in PINK1-KO NSCs. On day 4 of differentiation,
PINK1-KO NSCs were treated with the indicated amounts of a proteasomal
inhibitor (MG132) or a lysosomal inhibitor (lactacystin) for 24 h, and
GFAP levels were analyzed by Western blotting. The data shown are
representative of at least three independent experiments. (TIF 64 kb)

Abbreviation
GFAP: Glial fibrillary acidic protein; PD: Parkinson’s disease; PINK1: PTEN-
induced kinase 1.
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