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Endothelial progenitor cells and neural
progenitor cells synergistically protect
cerebral endothelial cells from Hypoxia/
reoxygenation-induced injury via activating
the PI3K/Akt pathway
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Abstract

Background: Protection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an
important strategy for treating ischemic stroke. In this study, we investigated whether co-culture with endothelial
progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and
the underlying mechanism.

Results: EPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were
used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically
inhibited H/R-induced reactive oxygen species (ROS) over-production, apoptosis, and improved the angiogenic and
barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the
expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs
complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF)
levels in conditioned medium, and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/
R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B
(TrkB) or phosphatidylinositol-3-kinase (PI3K).

Conclusions: Our data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury, via
activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.

Keywords: EPCs, NPCs, Cerebral ECs, Co-culture, PI3K/Akt signal pathway, Hypoxia-reoxygenation injury, VEGFR2,
VEGF, BDNF

Background
Brain endothelial cells (ECs) are critical components of
the blood brain barrier (BBB). Increased BBB permeabil-
ity leads to the development of tissue swelling, inflam-
matory cell infiltration and subsequently exaggerate

injury in ischemic stroke [1]. Therefore, protection of
ECs and BBB function should be an important strategy
for reducing ischemic injury. On the other hand, endo-
thelial progenitor cells (EPCs) have been suggested to
participate in EC protection, repair and angiogenesis [2].
Transplantation of EPCs is a promising cell therapy for
ischemic diseases such as acute myocardial infarction
and stroke [3–5]. Our previous studies have shown that
EPC infusion promotes angiogenesis in mouse ischemic
stroke models [5, 6]. EPCs released angiogenic growth
factors, such as vascular endothelial growth factor
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(VEGF) and insulin-like growth factor, could be responsible
for the beneficial effect of EPC conditioned medium on the
viability of H2O2-compromised human umbilical vein ECs
[7, 8]. Currently, we do not know whether EPCs can protect
cerebral ECs against hypoxia/reoxygenation (H/R)-injury.
Transplantation of neural progenitor cells (NPCs)

has also been shown to be effective for treating ische-
mic stroke in animal models [9, 10]. In addition to
generating neurons, grafted NPCs could promote
angiogenesis in a rodent stroke model [11]. A recent
report suggests that co-culture with NPCs decreases
the passive permeability of brain ECs [12]. Collect-
ively, these studies indicate a crosstalk between NPCs
and ECs. However, it is unclear whether NPCs and
EPCs have synergistic effects on EC protection.
The PI3K/Akt signal pathway participates in various

cellular processes such as cell survival and prolifera-
tion [13]. Previous studies have shown that activation
of the PI3K/Akt signal pathway promotes neuron
survival [14, 15], cardiac microvascular EC migration
[16], and axonal outgrowth compromised by oxygen-
glucose deprivation [17, 18]. It is unknown whether
this pathway is involved in the mechanism of the
benefits of NPCs and EPCs.

The aims of this study were to elucidate whether EPCs
and NPCs synergistically protect brain ECs from H/R-
induced injury and to explore whether the effects are
mediated by the PI3K/Akt signal pathway.

Results
NPCs and EPCs were successfully generated from human
inducible pluripotent stem cells
As shown in Fig. 1, the human inducible pluripotent
stem cells (iPSCs) grew as colonies staining positively for
pluripotent markers, Sox2 and Oct3/4. The generated
NPCs grew as neurospheres after 7-day neural induc-
tion, and expressed neural progenitor markers pax6
(98 ± 1 %) and nestin (96 ± 1.5 %), but not expressed
Oct3/4, indicating a high differentiation efficacy. The
generated NPCs had ability of differentiating into neurons,
which was evidenced by expressing neuron specific
marker Tuj1.
After 7-day EPC induction, approximately 48 ±

2.1 % of cells positively expressed endothelial progeni-
tor marker CD34. In order to get a pure population
of EPCs, we used CD34-conjugated microbeads to en-
rich the generated EPCs. The CD34-conjugated
microbeads purified cells positively expressed CD34

Fig. 1 Characterization of EPCs and NPCs from human iPSCs. A1, iPSCs grew on feeder-free matrigel. Scale bar: 2000 μm. A2-A3, iPSCs expressed
Sox2 and Oct3/4. B1, NPCs grew as neurospheres after 7 days neural differentiation. B2-B4, generated NPCs positively expressed neural progenitor
markers nestin and Pax6, and were negative for pluripotent stem cell marker Oct3/4. C, generated neurons positively stained neuron specific
marker Tuj1. D1-D3, purified EPCs positively expressed endothelial progenitor markers CD34 and KDR, but were negative for Oct3/4. Black curves:
isotype control; red curves: antibodies. D4, tube formation of EPCs. DAPI counterstained cell nucleus. Scale bar: 200 μm from A2-D4
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Fig. 2 EPCs and NPCs promoted the survival of H/R-injured ECs via activating the PI3K pathway. MTT assay and PI/FITC-Annexin V apoptosis assay
were conducted on H/R-injured ECs co-cultured with EPCs and/or NPCs for 24 h as described in Material and Methods. A1, representative morph-
ology images showing the viability of ECs. A2, summarized data showing EC viability which is synergistically increased when co-cultured with the
combination of EPCs and NPCs than that co-cultured with EPCs or NPCs alone. B1, representative flow plots of EC apoptotic rate. B2, summarized
data of the apoptotic rate of ECs, showing that the combination of EPCs and NPCs offers better anti-apoptotic effect than EPCs or NPCs alone.
Block the PI3K pathway could diminish the beneficial effects of EPCs and/or NPCs. And the PI3K pathway upstream blockers, SU1498 and K252a,
reduced these effects of EPCs and NPCs. *p < 0.05, vs. Normoxia; #p < 0.05, vs. vehicle. Data are expressed as mean ± SEM, n = 6/group/measure-
ment. LY294002: PI3K inhibitor; SU1498: VEGFR2 inhibitor; K252a: TrkB inhibitor
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(96 ± 2.1 %) and KDR (95 ± 1.8 %). As expected, the
purified EPCs did not express Oct3/4. In addition, the
generated EPCs had tube formation ability as revealed
by matrigel assay.

Co-culture with EPCs and NPCs synergistically protected
ECs from H/R-induced apoptosis and compromised
viability via activating the PI3K pathway
After exposed to the hypoxic condition for 6 h, ECs were
co-cultured with EPCs and/or NPCs for 24 h, followed
with apoptotic assay or MTT assay. Results (Fig. 2)
showed that co-culture with EPCs and NPCs exerted a
greater effect on decreasing H/R-injured EC apoptosis
than that co-culture with EPCs or NPCs separately did
(vehicle vs. EPCs or NPCs, p < 0.05; EPCs and NPCs vs.
EPCs or NPCs, p < 0.05). Similarly, the EC viability was
also synergistically increased by co-culture with EPCs
and NPCs (vehicle vs. EPCs or NPCs, p < 0.05; EPCs and
NPCs vs. EPCs or NPCs, p < 0.05). The synergistic ef-
fects on reducing EC apoptosis and improving EC viabil-
ity were achieved by an increase of approximately 24
and 28 %, respectively.
Moreover, our data showed that the PI3K inhibitor

(LY294002) pre-treatment could completely abolish the
abovementioned effects of EPCs and/or NPCs, suggest-
ing that the beneficial effects of EPCs and NPCs are me-
diated by the PI3K pathway. To define the contribution
of VEGFR2 and TrkB (PI3K upstream molecules) to
these effects, the respective inhibitors SU1498 and
K252a were pre-added in the co-culture system. Our re-
sults revealed that blockade of the VEGF/VEGFR2 and
BDNF/TrkB signals reduced the effects of EPCs and
NPCs.

Co-culture with EPCs and NPCs synergistically decreased
the oxidative stress of H/R-injured ECs via activating the
PI3K pathway
As shown in Fig. 3, ROS production was decreased in
H/R-injured ECs co-cultured with EPCs or NPCs (ve-
hicle vs. EPCs or NPCs, p < 0.05). Moreover, co-culture
with EPCs and NPCs decreased ROS production to a
larger extent than that with EPCs or NPCs alone did
(EPCs and NPCs vs. EPCs or NPCs, p < 0.05). The syner-
gistic effect on decreasing ROS production was obtained
by about 18 % increase.
As expected, pre-treatment with PI3K inhibitor,

LY294002, abolished the anti-oxidative effect of EPCs
and/or NPCs on H/R-injured ECs. Pre-treatment with
a combination of the PI3K upstream blockers SU1498
and K252a reduced the most anti-oxidative effects of
EPCs and NPCs on H/R-injured ECs. All of these
data indicate that the anti-oxidative effect of EPCs
and NPCs is mediated by the PI3K signal pathway.

H/R-compromised tube formation ability of ECs was
synergistically improved by co-culturing with EPCs and
NPCs via activating the PI3K signal pathway
We further assessed whether co-culture with EPCs and/
or NPCs altered the tube formation function of ECs ex-
posed to H/R. The results (Fig. 4) showed that EPCs or
NPCs alone increased the tube formation ability of H/R-
injured ECs (vehicle vs. EPCs or NPCs, p < 0.05). More-
over, co-culture with EPCs and NPCs exhibited a syner-
gistic effect on improving the tube formation ability of
ECs compromised by H/R (EPCs and NPCs vs. EPCs or
NPCs, p < 0.05). The synergistic effect of EPC plus NPC
co-culture on improving the tube formation ability was
increased by approximately 19 %.
In order to elucidate the possible role of the PI3K

pathway in the effect of EPCs and/or NPCs on EC
tube formation, the pathway specific inhibitor
LY294002 was used in the co-culture study. Our re-
sults showed that PI3K inhibition entirely abolished
this effect of EPCs and NPCs. Similarly, to further
explore whether VEGF/VEGFR2 and BDNF/TrkB sig-
nals could be responsible to trigger the activation of
the PI3K pathway, we pre-added their respective

Fig. 3 EPCs and NPCs decreased ROS production via activating the
PI3K pathway. A, ROS production, showing that ROS over-production
was much decreased in H/R-injured ECs co-cultured with EPCs and
NPCs than that co-cultured with EPCs or NPCs alone. LY294002
could diminish the anti-oxidative effect of EPCs and/or NPCs, and
the combination of SU1498 and K252a reduce such effect. *p < 0.05,
vs. Normoxia; #p < 0.05, vs. Vehicle. Data are expressed as mean ±
SEM, n = 6/group/measurement. LY294002: PI3K inhibitor; SU1498:
VEGFR2 inhibitor; K252a: TrkB inhibitor
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inhibitors SU1498 and K252a into the co-culture
system. As we expected from the data of apoptotic
and MTT assays, blockade of the VEGF/VEGFR2 and
BDNF/TrkB signals reduced the effect on tube
formation.

The endothelial permeability was improved by co-
culturing with EPCs and NPCs
Under physiological conditions, the endothelial mem-
brane is impermeable to macromolecules (mass weight
around 70 k Dalton) [19]. We performed permeability
assay to evaluate whether co-culture of EPCs and/or
NPCs could improve the barrier function of ECs com-
promised by H/R. As expected, H/R injury increased
trans-endothelial permeability to FITC-conjugated dex-
tran (mass weight around 10 k Dalton). Co-culture of
EPCs or NPCs decreased the flux of FITC-dextran, and
EPCs combined with NPCs was more effective in de-
creasing the FITC-dextran flux through the EC mono-
layer (Fig. 5a).

Co-culture with EPCs and NPCs complementarily elevated
the levels of VEGF and BDNF in the conditioned medium
of ECs exposed to H/R
In order to explore the mechanisms underlying the pro-
tective benefits of EPCs and NPCs, we performed ELISA
assay to determine the levels of VEGF and BDNF in the
culture medium. As shown in Fig. 5b, c, we found that
co-cultured with EPCs alone increased the VEGF level,
but not the BDNF level in the EC culture medium,

whereas, co-cultured with NPCs alone raised the BDNF
level, not the VEGF level. Moreover, co-culture with
EPCs and NPCs increased the levels of both VEGF and
BDNF in the EC medium, suggesting a complementary
effect.

The expression of VEGFR2 was upregulated and ratios of
p-Flk1/VEGFR2 and p-Akt/Akt were increased in H/R-in-
jured ECs co-cultured with EPCs and NPCs
As shown in Fig. 6a, co-culture with NPCs alone or with
EPCs and NPCs similarly increased the expression level
of VEGFR2 in H/R-injured ECs, whereas, co-cultured
with EPCs alone did not significantly change the expres-
sion of VEGFR2 in ECs, indicating that interaction of
NPCs with ECs.
Western blot results demonstrated that the expression

ratios of p-Flk1/VEGFR2 and p-Akt/Akt in H/R-injured
ECs were increased by co-culture with EPCs or NPCs
alone, with a greater increase when co-cultured with
both EPCs and NPCs (Fig. 6b, c). Data showed that the
net increase of the synergistic effect on up-regulating
the expression ratio of p-Akt/Akt was approximately
30 %. As expected, the PI3K inhibitor LY294002 abol-
ished the phosphorylation of Akt, suggesting that the
PI3K/Akt signal pathway is activated in ECs co-cultured
with EPCs and NPCs. A combination of SU1498 and
K252a decreased the phosphorylation of Akt, reflecting
that it at least partially depends on the upstream mole-
cules VEGFR2 and TrkB (Fig. 6b).

Fig. 4 EPCs and NPCs improved the angiogenic function of H/R-injured ECs via activating the PI3K pathway. a, representative plots of tube
formation. Scale bar: 200 μm. b, summarized data of EC tube formation, showing that EPC and NPC co-culture offers synergistically effects on
improving EC function compared to EPCs or NPCs alone. And such synergistic effect could be blocked by LY294002, or partially abolished by the
combination of SU1498 and K252a. *p < 0.05, vs. Normoxia; #p < 0.05, vs. Vehicle. Data are expressed as mean ± SEM, n = 6/group/measurement.
LY294002: PI3K inhibitor; SU1498: VEGFR2 inhibitor; K252a: TrkB inhibitor
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Discussion
In the present study, we showed that EPCs and NPCs
produced from human iPSCs had synergistic beneficial
effects on H/R-injured brain ECs. The major findings in-
clude: i) Co-culture with EPCs and NPCs synergistically
protected ECs from H/R-induced apoptosis and dysfunc-
tion; ii) The levels of VEGF and BDNF in the medium of
ECs co-cultured with EPCs and NPCs were increased;
iii) Co-culture with NPCs up-regulated VEGFR2 expres-
sion and its phosphorylation on ECs; iv) Blockade of the
VEGFR2 and Trkb or PI3K/Akt pathway inhibited or
abolished the protective effects of EPCs and NPCs
(Fig. 7).
ECs are unique and critical in maintaining normal

BBB function [20]. Impairment of BBB occurs in the
early stage of ischemic brain injury, leading to subse-
quent brain swelling and inflammatory responses [21].
Thus, protecting brain ECs from H/R-induced injury will
theoretically alleviate brain tissue damage in ischemic
stroke. Nevertheless, there is no clinically effective strat-
egy to protect ECs against H/R-induced injury in acute
ischemic stroke. Transplantation of stem cells has been
shown to accelerate the functional recovery of ischemic
stroke by promoting angiogenesis and neurogenesis [22].

Indeed, others and our studies have demonstrated that
engrafted EPCs or NPCs can alleviate acute ischemic in-
jury and promote angiogenesis and neurogenesis in an
ischemic stroke mouse model [5, 6, 9, 10]. However, it is
unknown whether there are synergistic effects if EPCs
and NPCs are combined to treat ischemic-reperfusion
stroke.
In the present study, we examined the effects of EPCs

and NPCs on H/R-injured brain ECs in vitro. It is well
known that iPSCs have unlimited self-renewal ability
and are able to differentiate to various types of cells with
less ethical issues for clinical applications [23, 24]. We
successfully differentiated human iPSCs into EPCs and
NPCs. To mimic the status of ECs in acute ischemic
stroke, we produced an in vitro model of brain EC H/R
injury, characterized with decreased viability, increased
apoptosis and cellular permeability, increased ROS pro-
duction, as well as compromised tube formation ability
[25]. By using this model, we found that co-culture with
EPCs or NPCs alone had beneficial effects on protecting
ECs from H/R-induced injury, including increase in
apoptosis, ROS production and intercellular permeabil-
ity, and decrease in viability and capillary formation.
Moreover, co-culture with both EPCs and NPCs

Fig. 5 EPCs and NPCs modulated the permeability and VEGF and BDNF secretion of H/R-injured ECs. a fold change of FITC-dextran flux, showing
that the combination of EPCs and NPCs has better effects than EPCs or NPCs alone on improving the endothelial barrier function of H/R-injured
ECs. b, c the levels of VEGF and BDNF in culture medium of normoxic cultured ECs, EPCs and NPCs, as well as hypoxic ECs co-cultured with EPCs,
or NPCs, or both EPCs and NPCs. The summarized data showing that the levels of VEGF and BDNF were much increased in H/R-injured ECs co-
cultured with EPCs and NPCs than that co-cultured with NPCs or EPCs alone. *p < 0.05, vs. Normoxia, #p < 0.05, vs. vehicle. Data are expressed as
mean ± SEM, n = 6/group/measurement
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achieved synergistic effects on those measurements by
18–28 % increase.
Numerous studies have shown that VEGF is released

from EPCs and ECs, and that BDNF is released from
NPCs, which are respectively responsible for the benefi-
cial effects of EPCs and NPCs [26, 27]. In order to deter-
mine whether EPC-derived VEGF and NPC-derived
BDNF are the major factors involved in the observed ef-
fects of EPCs and NPCs in this study, we have analyzed
the levels of VEGF and BDNF in the culture medium of
ECs. Our results showed that EPC co-culture increased
VEGF, but not BDNF level in the EC medium, whereas,

NPC co-culture increased BDNF, but not VEGF level in
the EC medium. More importantly, the data revealed
that EPCs and NPCs complementarily increased the
VEGF and BDNF levels in the co-culture medium of
ECs. In the present study, we did not study the dose-
dependent effects of VEGF and BDNF on ECs and not
compare if co-application of VEGF and BDNF is more
significant than simply increasing the dose of VEGF or
BDNF alone. However, our results revealed that the
combination of EPCs and NPCs have synergistic effects
on ECs. For exploration of the underlying mechanism,
we analyzed the expression of VEGFR2 and its

Fig. 6 Co-culture with EPCs and NPCs activated the PI3K/Akt signal pathway on H/R-injured ECs. a, VEGFR2 expression was significantly
upregulated in H/R-injured ECs co-cultured with NPCs or the combination of EPCs and NPCs. b the protein expression ratio of p-Flk1/VEGFR2 was
significantly increased in H/R-injured ECs co-cultured with EPCs or NPCs, with a higher ratio in ECs co-cultured with the combination of EPCs and
NPCs. c the protein expression ratio of p-Akt/Akt was increased in H/R-injured ECs co-cultured with EPCs and NPCs, and this effect was blocked
or reduced when ECs were pre-treated with PI3K inhibitor LY294002 or VEGFR2 inhibitor SU1498 or TrkB inhibitor K252a. *p < 0.05, vs. Normoxia;
#p < 0.05, vs. vehicle. Data are expressed as mean ± SEM, n = 6/group/measurement
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phosphorylation. The results showed that co-culture
with both EPCs and NPCs synergistically increased the
expression of p-Flk1/VEGFR2 in ECs. Of note, we found
that co-culture with NPCs, but not EPCs, up-regulated
the expression of VEGFR2 on ECs. This is supported by
a previous report showing that BDNF increases the on a
rat brain EC line [28], and suggests that NPCs can medi-
ate the synergistic effects by its secreted BDNF and pro-
vides the basis of the synergistic effects observed in the
co-culture group combining EPCs and NPCs. Further-
more, we examined the role of VEGF/VEGFR2 and
BDNF/TrkB signal pathways in the beneficial effects of
EPC/NPC co-culture. Our data showed that blockade of
both signals largely decreased the abovementioned ef-
fects of EPCs and NPCs, suggesting that the beneficial
effects of EPCs and NPCs are mainly dependent on the
VEGF/VEGFR2 and BDNF/TrkB signals. These data are
in consistent with the notion that VEGFR2 and TrkB are
the major modulators of endothelial survival [28]. Col-
lectively, VEGF and BDNF are the major factors for re-
sponsible of the synergistic effects of EPCs and NPCs in

the co-cultures, although there are unidentified factors
contributing a minor part.
The PI3K is the downstream pathway molecule of

VEGFR2 and TrkB, which mediates various cell activities
includes cell survival, cell proliferation [29-32]. There-
fore, we conducted experiments for further pathway ana-
lysis. We found that both EPCs and NPCs increased the
level of p-Akt/Akt in ECs. And there was a synergistic
effect on level of p-Akt/Akt when EPCs and NPCs were
simultaneously applied. The synergistic effect of EPC
plus NPC co-culture was 30 % on up-regulating the pro-
tein expression ratio of p-Akt/Akt. Moreover, the pro-
tective effects elicited by EPCs and/or NPCs were
abolished by blockade of PI3K with LY294002. Taken to-
gether, our data indicate that the PI3K pathway, down-
stream of VEGFR2 and TrkB, is responsible for the
beneficial effects of EPCs and NPCs.

Conclusion
In conclusion, our data demonstrate that EPCs and
NPCs can offer synergistic benefits in protecting brain
ECs against H/R injury by VEGF and BDNF paracrine-
mediated activation of the PI3K/Akt signal pathway.
These findings will help us to develop cell-based therapy
for ischemic stroke.

Methods
Human iPSCs culture
The vector-free viral-free human iPSCs cell line (iPS-
DF-19-9/7 T) was purchased from Wicell Research Insti-
tute (USA). The iPSCs were cultured with mTeSR1
medium (Stem cell technology) on matrigel-coated
plates (BD Bioscience), and expanded every 4–5 days ac-
cording to the manufacturer’s protocol. Passage of 28–
44 of human iPSCs were used for NPC or EPC induc-
tion. All experimental procedures were approved by
Wright State University Institutional Biosafety Commit-
tee and were in accordance with the approved
guidelines.

Generation of NPCs and EPCs from human iPSCs
EPCs and NPCs were produced from human iPSCs ac-
cording to previous reports with slight modifications [14,
15]. In brief, iPSC colonies were detached with dispase
(2 mg/ml in DMEM/F12; Stem cells), pooled together and
cultured to form embryoid bodies (EBs) in EB medium
(DMEM/F12+ 20 % knock out serum + 1 % nonessential
amino acid + 0.1 mM 2-mercapethonal + 1 % penicillin-
streptomycin solution) in low-attachment dishes (Corn-
ing) for 5–7 days. The DMEM medium and all supple-
ment reagents were purchased from Gibco. The EBs were
used for NPC and EPC generation.
For NPC generation, EBs were cultured in neural

medium (NM: Neurobasal medium A + B27 minus

Fig. 7 Proposed molecular mechanism for the protective effect
of EPCs and NPCs on H/R-injured brain ECs. Co-culture with EPCs
and NPCs synergistically increased the survival ability, decreased
the oxidative stress and improved the angiogenic and barrier
functions of H/R-injured EC, via activating the PI3K/Akt signal
pathway that mainly depended on the progenitor paracrine
(VEGF and BDNF) mediated signals. EPCs: endothelial progenitor
cells; NPCs: endothelial progenitor cells; VEGF: vascular endothe-
lial growth factor; BDNF: brain derived neurotrophic factor;
VEGFR2: vascular endothelial growth factor receptor 2; TrkB:
tyrosin kinase B; PI3K: phosphatidylinositol-3-kinase; H/R: hypoxia/
reoxygenation; EC: endothelial cells; ROS: reactive oxygen species
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Vitamin A (1x) + N2 (1x) + FGF (20 ng/ml) + EGF
(20 ng/ml) + 1 % penicillin-streptomycin solution) in
low-attachment dishes for 7–9 days. The neurobasal
mediumA and all supplement reagents were purchased
from Gibco. The generated NPCs were propagated in
free-floating aggregates (neurospheres), and used for an
in vitro differentiation assay to investigate neural differ-
entiation ability [33]. The generated NPCs and neurons
were confirmed by immunofluorescence analysis [34].
For EPC generation, EBs were cultured on gelatin

(0.1 %) coated plates with EPC medium (EBM-2
medium + growth factor mixture + 5 % FBS + VEGFA
(50 ng/ml) + FGF (25 ng/ml) for 7–9 days [14]. The
EBM-2 medium and all supplement reagents were pur-
chased from Gibco. The generated EPCs were purified
by magnetic activated cell sorting (MACS) with CD34-
microbeads according to the manufacture’s protocol
(Miltenyi Biotec), and assessed by flow cytometry and
matrigel assay.

Characterization of generated NPCs
For immunofluorescence analysis, generated NPCs were
fixed, permeabilized and blocked with blocking buffer
(PBS with 1 % BSA and 1 % Triton-100), then incubated
with neural progenitor specific markers nestin (1:100;
Pierce), pax6 (1:50; Pierce) and pluripotent specific
marker Oct3/4 (1:200; Abcam). Then the cells were in-
cubated with Cy-3 or Alexa fluo 488-conjugated second-
ary antibodies (1:150; Jackson ImmunoResearch) for 2 h
at room temperature. DAPI was used to counterstain
nuclei.
In order to determine the neuron differentiation cap-

ability of the produced NPCs, the generated NPCs were
cultured in neuron differentiation medium (NPBM
medium + BDNF (20 ng/ml) + FGF (20 ng/ml) + EGF
(20 ng/ml) + 1 % penicillin-streptomycin solution) for
3 weeks. The NPBM medium and all supplement re-
agents were purchased from Gibco. The differentiated
cells were permeabilized, incubated with neuron specific
marker β-tubulin (1:100; Pierce) and followed by incuba-
tion with Cy3-conjugated secondary antibody (1:150;
Jackson ImmunoResearch). DAPI were used to counter-
stain nuclei. All images were taken under an inverted
fluorescence microscope (EVOS, Life Technologies).

Purification and characterization of generated EPCs
In order to exclude the contamination of human iPSCs,
the generated EPCs were purified by using MACS ac-
cording to the manufacture’s instruction. In brief, the
differentiated cells (107 cells) were incubated with 10 μl
CD34-conjugated microbeads (Miltenyi Biotec Inc) in
the refrigerator for 20 min, followed by wash in PBS for
twice. The beads-binding cells were separated using an
autoMACS separator (Miltenyi Biotec Inc). All CD34+

cells were resuspended with EPC culture medium and
cultured in a regular humidified incubator.
For flow cytometry analysis, the purified EPCs were in-

cubated with FITC-conjugated CD34, FITC-conjugated
KDR, FITC-conjugated Oct3/4 or FITC-conjugated IgG
for 30 min (5 μl, eBioscience) in the dark. All antibodies
were purchased from eBioscience. After incubation, all
samples were analyzed under flow cytometry (Accuri C6
flow cytometer). 10,000 events were collected for data
analysis.

H/R-injury model of brain ECs
Cerebral EC cell line was purchased from Cell Systems
(Kirkland, WA) and cultured according to the manufac-
turer’s protocol. Passages 4–13 of ECs were used for ex-
periments in this study. The H/R-injury model of ECs
was produced as previously described [25]. Briefly, ECs
were changed with fresh culture medium and cultured
for 6 h in a hypoxic chamber (1 % O2, 5 % CO2, and
94 % N2; Biospherixhypoxia chamber), then reoxyge-
nated by incubation in a standard 5 % CO2 incubator for
24 h. During the reoxygenation period, ECs were co-
cultured with EPCs and/or NPCs as described below.

Co-culture brain ECs with EPCs and/or NPCs
The co-culture system was set up according to a previ-
ous report with minor modifications [35]. In brief, the
day before co-culture, NPCs (4 × 105), or EPCs (4 × 105),
or NPCs (2 × 105) and EPCs (2 × 105) were plated into
transwell membrane inserts (pore size, 0.4 μm; polycar-
bonate membrane, Greiner Bio-One, Germany) in NPC
and/or EPC culture medium for overnight. [36] During
the reoxygenation period, brain ECs (4 × 105) subjected
to hypoxic (1 % O2) were co-cultured with EPCs and/or
NPCs. For signal pathway study, LY294002 (PI3K inhibi-
tor; 20 μM, Cayman Chemical), SU1498 (VEGFR inhibi-
tor; 5 μM, BioVision), or k252a (TrkB inhibitor; 10 μg/
ml, BioVision) was added to EC culture medium 2 h
prior to co-culture experiments [25, 36–38] and pre-
sented in the EC culture during the co-culture period.
All inhibitors were dissolved with DMSO (Sigma) and
diluted with culture medium to yield desired concentra-
tions. ECs cultured in normoxia (5 % CO2, 37 °C) were
used as a control. ECs in the vehicle group were cul-
tured with EC culture medium only.

Cell viability, apoptosis and ROS production analyses of
ECs
The viability of H/R-injured ECs was measured by using
a methyl thiazolyl tetrazolium (MTT) kit (Invitrogen) as
we previously described with slight modification [25].
Briefly, after 24 h co-culture with EPCs and/or NPCs,
the ECs culture medium was replaced with 1 ml of fresh
culture medium with 100 μl of 12 mM MTT solution
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and incubated at 37 °C for 2 h. Then removed 850 μl of
medium from the wells and added 500 μl of DMSO to
each well, mixed thoroughly with the pipette and incu-
bated at 37 °C for 10 min. Finally, transferred 100 μl of
mixed solution from each well to a 96-well plate. The
plate was read by a reader (Bio-teck) at 570 nm. The
percent of cell viability was defined as the relative ab-
sorbance of cells in co-culture groups versus control
cells. At least six wells per experiment were used in each
group.
The apoptosis assay of ECs was conducted using

FITC-Annexin V apoptosis detection kit (BD Bioscience)
as we previously described [25]. In brief, after 24 h co-
culture with EPCs and/or NPCs, the ECs culture
medium was removed and rinsed twice with PBS, then
de-attached with 0.25 % trypsin/EDTA, centrifuged, re-
suspended with 100 μl 1x Annexin V-binding buffer and
incubated with 5 μl FITC-conjugated Annexin V and
5 μl propidium iodide (PI) in the dark for 15 min at RT.
The stained ECs were analyzed by flow cytometry
(Accuri C6 flow cytometer). The apoptotic cells were de-
fined as Annexin V+/PI− cells. The experiment was re-
peated six times.
The intracellular ROS production in ECs was deter-

mined by dihydroethidium (DHE, Sigma) [25]. Briefly,
after EPC and/or NPC co-culture, the EC culture
medium was replaced with fresh cultured medium con-
taining the DHE working solution (2 μM) at 37 °C for
2 h. Then the cells were detached with trypsin and were
analyzed by flow cytometer (Accuri C6). The experiment
was repeated six times.
ECs cultured in normoxia served as a control. ECs in the

vehicle group were cultured with EC culture medium only.
The synergistic effect of EPC plus NPC co-culture (Es) on
ECs was calculated by using the formula: Es = (EEPC+NPC−
EEPC − ENPC) / (EEPC +ENPC) x 100 %. EEPC represents
the effect elicited by EPC co-culture. ENPC represents
the effect elicited by NPC co-culture. EEPC+NPC represents
the effect elicited by EPC and NPC co-culture.

Tube Formation and endothelial permeability assays of
ECs
The tube formation ability of ECs was evaluated by
using a tube formation assay kit (Chemicon) with
slight modification [25]. After co-cultured with EPCs
and/or NPCs, the ECs were trypsinized and reseed at
a density of 5 × 103–1 × 104 onto the surface of the
polymerized ECMatrix™, and incubated at 37 °C in a
CO2 incubator for 12–16 h. The tube formation was
inspected under an inverted light microscope (EVOS).
Five independent fields were assessed for each well,
and the average number of tubes per field (magnifica-
tion, 200x) was determined.

Change in macromolecular permeability of brain ECs
was studied by using cell culture transwell insert method
[39]. In brief, brain ECs were seeded at a density of 1 ×
105 cells/well onto a 24-well transwell insert (pore size,
0.4 μm; polycarbonate membrane, Greiner Bio-One,
Germany). The EPCs or NPCs (2 × 104 cells/well) were
plated on the lower chamber of the transwell insert sys-
tem. Then the confluent ECs were subjected to hypoxic
culture. During the reoxygenation period, brain ECs
were co-cultured with the EPCs and/or NPCs for 24 h.
FITC-conjugated dextran (1 mg/ml; 10 k Dalton, Sigma)
was added to the upper compartment 90 min before the
end of the experiment. The relative fluorescence passed
through the polycarbonate membrane into the lower
chamber was determined by using a fluorescent plate
reader (Synergy, Bio-Tek, Vermont). Relative fluorescent
changes to normoxia were presented. ECs in the vehicle
group were cultured with EC culture medium only. Like-
wise, Es was calculated as: Es = (EEPC +NPC − EEPC
− ENPC) / (EEPC +ENPC) x 100 %.

Western blot analysis
H/R-injured ECs were harvested after co-cultured
with EPCs and/or NPCs. Proteins were extracted with
cell lysis buffer (Thermo scientific) supplemented with
complete mini protease inhibitor tablet (Roche). Pro-
tein lysates were electrophoresed through SDS-PAGE
gels and transferred onto PVDF membranes. The
membranes were blocked with 5 % non-fat milk for
1 h and incubated with primary antibodies against
Akt (1:1000; Cell Signaling), p-AKt (1:1000; Cell Sig-
naling), VEGFR2 (1:1000; Cell Signaling), p-Flk1
(1:200; Santa Cruz), and β-actin (1:4000; Sigma) at 4 °
C for overnight. After washing, membranes were in-
cubated with horseradish-peroxidase-conjugated IgG
(Jackson Immuno Research Lab) for 1 h at RT. Blots
were developed with enhanced chemiluminescence de-
veloping solutions and quantified under ImageJ soft-
ware. For detecting the protein expressions of Akt
and p-Akt in all groups, two sets of gels were done.
One set of gels was used to compare the difference
between normoxia and hypoxia groups, and the other
set of gels was used to compare the differences
among different treatment groups in the Hypoxia
groups. All experiments were repeated at least six
times. Similarly, Es was calculated as: Es = (EEPC + NPC

− EEPC − ENPC) / (EEPC +ENPC) x 100 %.

ELISA assay of VEGF and BDNF
For determining the baseline level of VEGF and BDNF
in the culture medium of EPCs and NPCs, we collected
their respective culture medium before the co-culture
experiments. After co-culture with EPCs and/or NPCs,
the conditional medium of H/R-injured ECs in various
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groups was also collected. The levels of trophic factors
VEGF and BDNF in the culture medium were deter-
mined with ELISA kits (R&D systems) by following the
manufacturer’s instructions. ECs cultured in normoxia
served as a control. ECs in the vehicle group were cul-
tured with EC culture medium only.
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