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Abstract

Background: In the adult hippocampus new neurons are continuously generated from neural stem cells (NSCs)
present at the subgranular zone of the dentate gyrus. This process is controlled by Wnt signaling, which plays a
complex role in regulating multiple steps of neurogenesis including maintenance, proliferation and differentiation
of progenitor cells and the development of newborn neurons. Differential effects of Wnt signaling during
progression of neurogenesis could be mediated by cell-type specific expression of Wnt receptors. Here we studied
the potential role of Frizzled-1 (FZD1) receptor in adult hippocampal neurogenesis.

Results: In the adult dentate gyrus, we determined that FZD1 is highly expressed in NSCs, neural progenitors and
immature neurons. Accordingly, FZD1 is expressed in cultured adult hippocampal progenitors isolated from mouse
brain. To evaluate the role of this receptor in vivo we targeted FZD1 in newborn cells using retroviral-mediated
RNA interference. FZD1 knockdown resulted in a marked decrease in the differentiation of newborn cells into
neurons and increased the generation of astrocytes, suggesting a regulatory role for the receptor in cell fate
commitment. In addition, FZD1 knockdown induced an extended migration of adult-born neurons within the
granule cell layer. However, no differences were observed in total dendritic length and dendritic arbor complexity
between control and FZD1-deficient newborn neurons.

Conclusions: Our results show that FZD1 regulates specific stages of adult hippocampal neurogenesis, being
required for neuronal differentiation and positioning of newborn neurons into the granule cell layer, but not for
morphological development of adult-born granule neurons.

Keywords: Adult neurogenesis, Hippocampus, Neural progenitor cells, Neuronal differentiation, Wnt signaling,
Frizzled

Background
The hippocampus is one of the two brain regions
where neurogenesis takes place in the adult mamma-
lian brain. In the dentate gyrus, radial glia-like neural
stem cells (NSCs) that are present at the subgranular
zone (SGZ), between the granule cell layer (GCL) and
the hilus, divide and generate transient-amplifying progen-
itors that have the potential to differentiate into granule
neurons that mature over several weeks and integrate
into the hippocampal network [1, 2]. Adult generated
neurons contribute to the plasticity of the hippocam-
pus [3, 4] and are important for some forms of

hippocampal-dependent learning and memory, includ-
ing spatial memory, pattern separation and contextual
fear conditioning [5–7].
The sequential steps of adult neurogenesis are

tightly controlled by intrinsic and extrinsic factors.
Progression of neurogenesis is coordinated by tran-
scriptional and epigenetic mechanisms [8], local net-
work activity [9], and signaling molecules including
Wnts [10–13]. Wnt ligands are members of a family
of 19 secreted glycoproteins in mammals that bind to
seven-pass transmembrane Frizzled (FZD) receptors
to trigger the activation of the canonical Wnt/β-ca-
tenin signaling pathway or the non-canonical Wnt/
Ca2+ or Wnt/planar cell polarity (PCP) signaling cas-
cades [14]. In vitro experiments in cultured adult hip-
pocampal progenitors (AHPs) isolated from adult rat

* Correspondence: lorena.varela@unab.cl
1Center for Biomedical Research, Faculty of Biological Sciences and Faculty of
Medicine, Universidad Andres Bello, Santiago, Chile
Full list of author information is available at the end of the article

© 2016 Mardones et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Mardones et al. Molecular Brain  (2016) 9:29 
DOI 10.1186/s13041-016-0209-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-016-0209-3&domain=pdf
mailto:lorena.varela@unab.cl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


brain have shown that astrocyte-derived Wnts induce
the differentiation of these progenitors into neurons
[15]. On the contrary, endogenous Wnts produced by
AHPs prevent differentiation and support proliferation
and multipotency of progenitor cells, suggesting that
autocrine Wnt signaling is relevant for the maintenance
of NSCs [16]. In the SGZ of the adult rat hippocampus,
the Wnt/β-catenin signaling pathway is active in prolif-
erating cells [15]. Additionally, in vivo manipulation of
Wnt activity indicated a role for Wnt signaling in cell
proliferation and in the generation of new neurons [15].
In agreement with these observations, Wnt inhibitors
Dickkopf 1 (Dkk1) and secreted frizzled-related protein
3 (sFRP3) negatively regulate neurogenesis under
physiological conditions [17–19]. Moreover, sFRP3 de-
letion promotes dendritic development, dendritic spine
formation and leads to accelerated maturation of new-
born neurons [18], indicating that Wnt signaling is also
relevant for maturation of adult-born neurons.
Altogether, this evidence indicates that in the adult
dentate gyrus Wnt signaling plays a complex role in
regulating multiple steps of neurogenesis including pro-
liferation of NSCs, differentiation of progenitor cells
and development of adult-born neurons. Considering
that all these steps of neurogenesis occur in the dentate
gyrus where cells at different stages of neurogenesis are
in close proximity, we proposed that cell-type specific
activities of Wnts during this process might be deter-
mined by specific Wnt receptors [12]. In agreement,
the expression of some Wnt receptors changes during
differentiation in cultured AHPs [20]. During hippo-
campal development, FZD receptors also show differen-
tial expression [21], and in cultured hippocampal
neurons FZDs show different cellular distributions that
seems to correlate with their specific functions [21–24].
In the present study, we evaluated whether the receptor
FZD1 contributes to hippocampal neurogenesis in the
adult mouse brain. We specifically focused our study
on FZD1 since it is expressed in the adult hippocampus
[22, 25], is a well known receptor for the Wnt/β-catenin
signaling pathway [25–29], and has been reported to act
as a receptor for Wnt3 and Wnt3a [25, 26, 30, 31], which
have been involved in adult neurogenesis [15, 32]. Further-
more, FZD1 has been shown to be a Wnt target gene that
may function as part of a positive auto-feedback loop to
control Wnt signaling [29, 31, 33]. We determined that
FZD1 is expressed in NSCs, neural progenitor cells and im-
mature neurons of the adult dentate gyrus. In vivo, FZD1
knockdown impaired neuronal differentiation and altered
migration of newborn neurons within the GCL. However,
FZD1 knockdown did not affect dendritic development.
These findings indicate that FZD1 regulates specific steps
of neurogenesis being important for neuronal differenti-
ation and positioning of newborn neurons into the GCL.

Results
FZD1 is expressed in neural progenitor cells and
immature neurons in the dentate gyrus of the adult
hippocampus
We first analyzed the expression of the FZD1 receptor
in the dentate gyrus of 2-month-old mice by immuno-
fluorescence. To evaluate whether the receptor is
expressed in NSCs, FZD1-staining was evaluated in cells
positive for glial fibrillary acidic protein (GFAP) and the
transcription factor SOX2, two proteins present in radial
glia-like NSCs in the SGZ [34]. FZD1-staining was ob-
served in the GCL, being more prominent in the inner
layer of the GCL and in the SGZ (Fig. 1a). FZD1-
staining was observed in SOX2-positive cells with a sin-
gle GFAP-positive projection (Fig. 1a, arrows), indicating
that the receptor is present in NSCs, and was also ob-
served in cells only positive for SOX2 (Fig. 1a, arrow-
head), suggesting that the receptor is present in
transient-amplifying progenitors, which do not express
GFAP. In agreement, FZD1 staining was detected in cells
expressing the mitotic marker Ki67 that were negative
for GFAP (Fig. 1b). Also, FZD1 colocalized partially with
cells positive for the immature neuron marker double-
cortin (DCX) (Fig. 1c). FZD1 staining was mostly ob-
served in the cell bodies of DCX-positive cells present in
the GCL (Fig. 1d, arrows).
The expression of FZD1 was also evaluated in cultured

AHPs isolated from the adult mouse hippocampus [35].
AHPs showed characteristic progenitor cell morphology
(Fig. 2a), and 93.00 ± 2.82 % were positive for SOX2 and
the cytoskeletal protein nestin (Fig. 2b). RT-PCR analysis
and immunofluorescence staining showed that FZD1
was expressed in cultured AHPs (Fig. 2c–d), supporting
that FZD1 is expressed in neural progenitor cells of the
adult dentate gyrus.

FZD1 knockdown impairs neurogenesis in the adult
dentate gyrus
Considering the expression of FZD1 in neural progeni-
tors and newborn neurons, we analyzed the in vivo role
of FZD1 in adult hippocampal neurogenesis. For this
purpose we designed a mouse FZD1–targeting shRNA
(shFZD1) that was cloned into a retroviral vector that
co-expresses the fluorescent protein ZsGreen (ZsG).
Firstly, the efficiency of shFZD1 was assessed in the
mouse neuroblastoma cell line Neuro-2a (N2a), which
expresses the FZD1 receptor (Fig. 2c). In N2a cells trans-
fected with shFZD1 there was a significant knockdown
of endogenous FZD1 compared to N2a cells transfected
with a control shRNA (shC). Significant decreases were
observed at the mRNA and protein levels as assessed by
qRT-PCR (Fig. 3a) and immunoblot (Fig. 3b), respect-
ively. Knockdown of FZD1 was also evaluated in cul-
tured mouse AHPs transfected with the retroviral
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vectors (Fig. 3c). Reduced FZD1 staining was observed
in AHPs transfected with shFZD1 (expressing ZsG, ar-
rows) compared to neighboring non-transfected cells
(not expressing ZsG) (Fig. 3d).
To evaluate the effect of FZD1 knockdown on Wnt/β-

catenin signaling activity, N2a cells were transfected with
shRNAs and the expression of the Wnt target genes Prox1
and NeuroD1 [32, 36] was evaluated by qRT-PCR. Cells
transfected with shFZD1 showed decreased mRNA levels

of both genes compared to N2a cells transfected with shC
(Fig. 3e). In addition, β-catenin was reduced by 0.6-fold in
AHPs transduced with the shFZD1-expressing retrovirus
compared with cells expressing shC (Fig. 3f). These results
suggest that FZD1-knockdown reduced the Wnt/β-ca-
tenin signaling.
Then, to knockdown FZD1 expression in proliferating

cells in vivo shRNA-expressing retroviruses were stereo-
taxically injected into the dentate gyrus of 2-month-old

Fig. 1 FZD1 is expressed in NSCs, amplifying progenitors and immature neurons of the adult mouse hippocampus. a Representative
immunodetection of FZD1, SOX2 and GFAP in the dentate gyrus of 2-month-old mouse. Scale bar: 50 μm. Right, higher magnification of the
image. Arrows indicate SOX2-positive cells with a single GFAP-positive projection. Arrowhead indicates a cell only positive for SOX2. Scale bar:
5 μm. b Immunodetection of FZD1, GFAP and the mitotic marker Ki67, scale bar: 50 μm. Right, higher magnification of the image. Arrows indicate
cells positive for FZD1 and Ki67 staining. Scale bar: 10 μm. c Representative immunodetection of FZD1, DCX and NeuN in the dentate gyrus of 2-
month-old mouse. Scale bar: 50 μm. d Higher magnification of the image shown in c. For simplification, only the double staining FZD1/DCX is
shown. Arrows indicate FZD1-staining in the cell body of DCX-positive immature neurons. Scale bar: 10 μm. ML: molecular layer, GCL: granule cell
layer, SGZ: subgranular zone, H: hilus
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mice. Mice were sacrificed 1 and 2 weeks post injection
(wpi) to evaluate differentiation of newborn cells, and 4
wpi to evaluate neurogenesis and morphology of new-
born granule neurons (Fig. 4a). Immunostaining of
GFAP and SOX2 was carried out at 1 wpi to evaluate
whether FZD1 knockdown affected the pool of NSCs
and neural progenitor cells. No differences were ob-
served in the percentage of ZsG-positive (ZsG+) cells
SOX2 + GFAP+ and SOX2 + GFAP- between shC and
shFZD1 mice (Fig. 4b). To evaluate neuronal differenti-
ation, DCX staining was analyzed in control and FZD1-
deficient cells. DCX is known to be transiently expressed
in newly generated neuroblasts and immature neurons
and its expression decreases as mature neuronal markers
begin to be expressed [37]. A decrease in the percentage
of newborn ZsG+ cells expressing DCX was observed 1
wpi in shFZD1 mice compared with mice injected with
shC-expressing control viruses (Fig. 4b). At 2 wpi, ZsG+
cells were observed in the SGZ in mice injected with
shC and shFZD1 expressing retroviruses (Fig. 4c). Most

shC-expressing cells were positive for DCX staining
(Fig. 4d), and as expected for 2-week-old neurons, ZsG+
cells were negative for the mature neuronal marker
NeuN (Fig. 4c). On the contrary, most FZD1-deficient
cells were negative for both DCX and NeuN (Fig. 4c).
There was a significant reduction in the percentage of
ZsG + DCX+ cells in shFZD1 mice compared with con-
trol animals (Fig. 4d). These results suggest that neur-
onal differentiation is impaired in FZD1-deficient cells.
To assess the effect of FZD1 knockdown on the gener-

ation of new granule neurons, we evaluated the expres-
sion of NeuN in ZsG+ cells at 4 wpi, which is when
adult-born neurons should express this mature neuronal
marker [37]. ZsG+ cells were observed in the dentate
gyrus of mice injected with shC and shFZD1-expressing
retroviruses (Fig. 4e); however, whereas most ZsG+ cells
expressing shC expressed NeuN, most FZD1-deficient
cells did not express this mature neuronal marker
(Fig. 4f ). There was a strong decrease in the percentage
of ZsG + NeuN+ cells in shFZD1-expressing mice

Fig. 2 FZD1 is expressed in AHPs isolated from adult mouse hippocampus. a Monolayer of AHPs isolated from 6-week-old mouse hippocampus
and cultured under proliferation conditions. Scale bar: 50 μm. b Immunoflurescence staining of SOX2 and nestin in AHPs. Nuclei were stained
with NucBlue (NucB). Scale bar: 10 μm. c RT-PCR analysis of the expression of FZD1 and GAPDH in cultured AHPs (lane 1), N2a cells (lane 2),
mouse hippocampus used as positive control (lane 3) and water used as PCR negative control (N/C, lane 4). d Immunoflurescence staining of
FZD1, nestin and SOX2 in AHPs. Scale bar: 50 μm. Bottom panels, higher magnification of the cells indicated in top panels. Scale bar: 20 μm
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compared with control animals (Fig. 4f ). Of note, ZsG +
NeuN- cells did not express DCX either (Fig. 4e). In fact,
no cells ZsG + DCX+ were observed at 4 wpi in mice
injected with shC and shFZD1 retroviruses, indicating
that ZsG +NeuN- cells were not neurons in an
immature state. Also, we analyzed the expression of
GFAP at 4 wpi, and determined that in mice injected
with shFZD1 there were an increased percentage of ZsG
+ cells expressing GFAP compared with control mice
(shC: 23.06 ± 1.21; shFZD1: 42.23 ± 2.5 % of ZsG+ cells,
p = 0.0139). Based on morphology of GFAP+ cells we
quantified the percentage of radial glia-like NSCs and
astrocytes (Fig. 4g), and determined that in shFZD1-
injected mice there was a significant increase in the per-
centage of ZsG+ astrocytes (Fig. 4h), while there was no
change in the percentage of radial glia-like NSCs. These
results suggest that FZD1 knockdown impaired normal
differentiation of newborn cells decreasing the percent-
age of cells that differentiate into granule neurons and
increasing differentiation into astrocytes. Taken together
these results demonstrate that FZD1 knockdown impairs
neurogenesis in the adult hippocampus.

FZD1 knockdown changes the migration but not
dendritic arborization of adult-born granule neurons
To evaluate whether other steps of neurogenesis were
affected by knockdown of FZD1, we analyzed the
small percentage of ZsG+ cells that did express NeuN.
In these cells, we evaluated migration into the GCL
and dendrite development, both processes regulated
by the Wnt signaling pathway in the adult hippocam-
pus [18, 20]. It has been shown that adult-born neu-
rons remain primarily positioned within the inner
third of the GCL [38, 39]. As expected, at 4 wpi ZsG
+ NeuN+ cells expressing shC were located primarily
within the first third of the GCL whereas shFZD1-
expressing cells showed overextended migration
(Fig. 5a and b). This result suggests that FZD1-
mediated signaling regulates newborn neuron migra-
tion into the GCL in the adult dentate gyrus.
To evaluate dendritic arborization of newborn neurons

(Fig. 5c), we selected all ZsG +NeuN+ cells (Fig. 5c,
inset), with a complete ZsG+ dendritic arbor. No signifi-
cant differences were observed in total dendritic length
(Fig. 5d) or number of intersections (Fig. 5e) between

Fig. 3 FZD1 knockdown in N2a cells and AHP isolated from adult mouse brain. a qRT-PCR from total RNA isolated from N2a cells 48 h after
transfection with retroviral vectors expressing shRNAs (shC or shFZD1) and the fluorescent protein ZsGreen (ZsG). FZD1 mRNA levels were
normalized to GAPDH mRNA and expressed relative to shC. Bars represent mean ± S.E. *p < 0.05, Student’s t-test (N = 7 independent experiments).
b Immunoblot analysis of FZD1 and β-actin in total protein extracts from N2a cells 48 h after transfection with the retroviral vectors. Lines at the
right indicate molecular weight standards: 70 kDa (top) and 40 kDa (bottom). c Immunofluorescence analysis of FZD1 and SOX2 in AHPs 96 h after
transfection with retroviral vectors expressing shC or shFZD1. Arrows indicate transfected cells (ZsG+). Scale bar: 20 μm. d Higher magnification of
the cells indicated by dotted lines in top panels. Scale bar: 20 μm. e qRT-PCR quantification of the mRNA levels of NeuroD1 and Prox1 in N2a cells
48 h after transfection with shC or shFZD1. mRNA levels were normalized to GAPDH and expressed relative to shC (dotted line). Bars represent
mean ± S.E. *p < 0.05, Student’s t-test (N = 3 independent experiments). f Immunoblot analysis of β-catenin and α-tubulin used as loading control,
in total protein extracts from AHP cells 48 h after transduction with retrovirus expressing shC or shFZD1. Lines at the right indicate molecular
weight standards: 90 kDa (top) and 55 kDa (bottom)
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newborn neurons expressing shC and shFZD1, suggest-
ing that the FZD1 receptor is not required for dendrite
development in adult-born granule neurons. To further
analyze dendritic arborization, Sholl analysis was carried
out in 4-week-old ZsG+ neurons, which revealed no sig-
nificant differences in dendritic complexity between con-
trol and FZD1-deficient neurons (Fig. 5f ).

Discussion
The Wnt signaling pathway plays multiple roles during
adult neurogenesis, regulating proliferation, differenti-
ation and maturation of newborn neurons [15–18, 40].
Here we studied the potential role of the Wnt receptor
FZD1 during adult hippocampal neurogenesis. We spe-
cifically focused on FZD1 since it is expressed in the

adult hippocampus [22, 25], and is well known to acti-
vate the canonical Wnt/β-catenin signaling pathway
[25–29]. We found that in the adult dentate gyrus,
FZD1 is mainly expressed in NSCs, amplifying progeni-
tors and immature neurons, suggesting that FZD1 may
mediate the activation of the Wnt pathway in these cell-
types. In agreement, the expression of FZD1 was also
found in cultured AHPs that were isolated from hippo-
campi of adult mice.
The in vivo role of FZD1 in adult neurogenesis was

evaluated by retrovirus-mediated shRNA knockdown of
FZD1 expression in newborn cells of the dentate gyrus.
We determined that differentiation into neurons was im-
paired in FZD1-deficient cells. In young mice the per-
centage of neuronal differentiation is normally 70–80 %

Fig. 4 FZD1 knockdown reduces the generation of newborn granule neurons in the dentate gyrus. a Schematic representation of the
experimental procedure. Retroviruses expressing shRNAs (shC or shFZD1) and ZsGreen (ZsG) were injected into the dentate gyrus of 2-month-old
mice by stereotaxic surgery. Animals were sacrificed 1, 2 or 4 weeks post injection (wpi) to analyze neuronal fate commitment (1 and 2 wpi),
generation and morphology of newborn granule neurons (4 wpi). b Quantification of the percentage of ZsG+ cells expressing SOX2/GFAP and
the immature neuronal marker DCX 1 wpi. Bars represent mean ± S.E. *p < 0.05, Student’s t-test (N ≥ 4 mice). c Immunostaing of DCX and NeuN
in brain sections from animals sacrificed 2 wpi. Images at the right show separated channels of a section of the images shown at the left. Dotted
circles indicate transduced cells (ZsG+) in the merged images and in the separated channels. Scale bar: 20 μm. d Quantification of the percentage
of ZsG+ cells expressing DCX at wpi. Bars represent mean ± S.E. *p < 0.05, Student’s t-test (N≥ 3 mice). e Immunostaing of DCX and NeuN in brain
sections from animals sacrificed 4 wpi. Images at the right show separated channels of a single z-plane section of the images shown at the left.
Dotted circles indicate transduced cells (ZsG+) in the merged images and in each channel. Scale bar: 20 μm. f Quantification of the percentage of
ZsG+ cells expressing the mature neuronal marker NeuN at 4 wpi. Bars represent mean ± S.E. *p < 0.01, Student’s t-test (N≥ 3 mice). g Representative
ZsG+ astrocytes and radial glia-like NSCs expressing GFAP. Scale bar: 20 μm. h Quantification of the percentage of ZsG+ cells that show
astrocyte or NSCs morphology at 4 wpi. Bars represent mean ± S.E. *p < 0.01, Student’s t-test (N = 4 mice). ML, molecular layer; GCL,
granule cell layer; SGZ, subgranular zone
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[41–43], very similar to what was observed in mice
expressing shC. Instead, we determined that ~40 % of
newborn FZD1-deficient cells were positive for the im-
mature neuron marker DCX at 1 and 2 wpi, suggesting
that FZD1-mediated signaling is involved in neuronal
differentiation during adult neurogenesis. Importantly,
as determined by immunostaining for SOX2 and GFAP,
no changes were observed in the pool of shRNA-
expressing NSCs or neural progenitor cells between shC
and shFZD1 mice, suggesting that the reduction in ZsG

+ cells that became DCX+ neuroblasts and immature
neurons was not due to a reduced progenitor cell popu-
lation, but more likely due to impaired neuronal differ-
entiation of progenitor cells. Moreover, 4 weeks after the
retroviral injection there was a strong decrease in the
percentage of FZD1-defcient cells that became granule
neurons. Of note, FZD1-deficient cells that did not be-
come granule neurons were not in an immature state,
suggesting that the neuronal differentiation deficit is not
a consequence of a delayed development of newborn

Fig. 5 FZD1 knockdown affects migration but not dendritic development of newborn neurons. a Immunofluorescence staining of NeuN in
animals sacrificed 4 wpi. Scale bar: 30 μm. Right panels, single focal planes of merged images (ZsG/NeuN) or NeuN staining separated. Dotted
circles indicate the neuron that is shown in right panels. b The percentage of migration of ZsG + NeuN+ cells into the GCL was evaluated as
shown in the sketch. The graph shows the migration of 4-week-old ZsG + NeuN+ cells. ***p < 0.001, Student’s t-test. c Denditric development of
4-week-old ZsG+ neurons. Images show 2D reconstructions of neurons infected with shC (top panel) and shFZD1 (bottom panel). Insets show
representative NeuN-staining in ZsG+ cells. d, e Total dendritic length (d), and total number of intersections (e) of 4-week-old ZsG+ neurons.
N≥5 neurons; ns: not significant, Student’s t-test, p = 0.141 (d), p = 0.163 (E). f Sholl analysis of dendritic complexity of ZsG + NeuN+ cells. ML,
molecular layer; GCL, granule cell layer; H, hilus
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neurons. Concomitantly with the decreased generation
of new neurons, there was an increased percentage of
FZD1-deficient cells that expressed GFAP and showed
astrocyte morphology, supporting that FZD1-deficiency
impaired normal differentiation. However, we cannot
eliminate the possibility that reduced survival of
newborn neurons may also contribute to the strong re-
duction in FZD1-deficient cells that became granule
neurons.
FZD1 receptor mediates the activation of the canonical

Wnt pathway by different Wnt ligands [25–29]; in agree-
ment, we determined in N2a cells and AHPs that FZD1-
knockdown reduced Wnt/β-catenin signaling activity.
Therefore, it is possible that in the SGZ FZD1 mediates
the activation of canonical Wnt signaling in progenitor
cells to induce neural differentiation. In agreement, it is
known from Wnt/β-catenin reporter mice that the ca-
nonical Wnt pathway is active in neural progenitor cells
in the SGZ [44], and it was recently determined that
knocking down the expression of LRP6, which is one of
the co-receptors required for the activation of the Wnt/
β-catenin signaling pathway, decreased neuronal fate de-
termination of newborn cells [20]. The mechanism in-
volved in the regulation of neuronal differentiation by
Wnts involves the expression of proneural Wnt target
genes [32, 36, 40], including the transcription factors
NeuroD1, which stimulates neuronal differentiation and
survival of neural progenitor cells in the adult dentate
gyrus [32, 45] and Prox1, which is required for initial
granule cell differentiation in the adult hippocampus
[36]. Interestingly, we determined that both genes were
downregulated by FZD1 knockdown. Therefore, it is
possible that FZD1 regulates neuronal differentiation in
the adult hippocampus by mediating the activation of
the canonical Wnt/β-catenin signaling pathway and the
expression of proneural genes.
Although most FZD1-deficient cells did not become

granule neurons, there was a small proportion of cells
that expressed the mature neuronal marker and showed
neuronal morphology. We hypothesized that these cells
were transduced with the shFZD1-expressing retrovirus
(or expressed the shRNA) after the differentiation
process was initiated. In these cells we evaluated migra-
tion and dendrite development, two processes regulated
by Wnt signaling in the adult dentate gyrus [18, 20].
Adult-born neurons do not distribute randomly in the
dentate gyrus, instead these remain primarily within the
inner third of the GCL [38, 39]. In agreement with that,
we observed that in control animals newborn neurons
were located in the inner part of the GCL close to the
SGZ, while FZD1-deficient newborn neurons reached
outer layers. The mechanisms that prevent newborn neu-
rons from migrating to the outer GCL are not fully under-
stood. It was recently suggested that non-canonical Wnt/

PCP signaling is involved in this process [20], but also al-
teration of adult-born neurons migration was observed in
mice overexpressing GSK-3β [46], a key enzyme of the
Wnt/β-catenin pathway that is inhibited upon activation
of the signaling cascade, suggesting that canonical Wnt
signaling may also be involved in this process. Moreover,
knockdown of Disrupted-In-Schizophrenia 1 (DISC1),
which inhibits GSK-3β and regulates neurogenesis
through the Wnt/β-catenin signaling pathway [47], leads
to overextended migration of adult-born granule neurons
[48]. Therefore, it is possible that the effect observed in
the migration of FZD1-deficient cells might be a conse-
quence of impaired activation of the Wnt/β-catenin sig-
naling pathway in newborn neurons as also suggested by
the impaired neuronal differentiation. On the other hand,
no significant effect was observed in dendrite morphogen-
esis by knockdown of FZD1. Wnt signaling regulates den-
drite development in early cultures of hippocampal
neurons, which involves non-canonical Wnt signaling
components [23, 49]. β-catenin has also been involved in
dendrite development, but this effect depends on the
membrane cadherin/catenin adhesion complex and does
not require Wnt/β-catenin-dependent transcription [50].
More recently, it was also demonstrated that the non-
canonical Wnt/PCP pathway is involved in morpho-
logical maturation of adult-born neurons in the
hippocampus, while LRP6 knockdown showed no ef-
fects on granule cell morphogenesis [20]. This data
supports the notion that FZD1 activates canonical
Wnt signaling in progenitor cells and newborn neu-
rons to regulate specific steps of neurogenesis, how-
ever, further analyses are required to fully elucidate
the signaling cascades involved.
It was recently shown that unlike FZD1, FZD3 is

required for dendrite morphogenesis, but it is not in-
volved in cell-fate determination [20]. Interestingly,
FZD3 is not present in NSCs but is present in imma-
ture and mature neurons at the dentate gyrus. This
evidence suggests that there is a cell-type specific ex-
pression of FZD receptors during adult hippocampal
neurogenesis, which could mediate the multiple ef-
fects of Wnt signaling during this process [12]. We
previously determined that FZD receptors have spe-
cific expression profiles during postnatal hippocampal
development and have particular cellular distributions
in cultured hippocampal neurons isolated from rat em-
bryos [21], which are associated with different roles of
Wnts in neurons including polarity, dendrite and axon
morphogenesis and synapse formation [22–24, 51]. A
similar regulation might occur during adult neurogenesis
where NSCs and newborn neurons at different stages of
maturity may express a different repertoire of Wnt recep-
tors to mediate the different effects of Wnt signaling dur-
ing the progression of neurogenesis.
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Conclusions
In the present study we determined that FZD1: (i) is
expressed in NSCs, neural progenitor cells and imma-
ture neurons of the adult hippocampus; (ii) is involved
in neuronal differentiation of hippocampal progenitor
cells; (iii) regulates migration of newborn neurons into
the GCL; (iv) is not required for dendritic development
of adult-born granule cells. Altogether, these findings
demonstrate for the first time that FZD1 is required for
adult hippocampal neurogenesis.

Methods
Animals
Adult C57/BL6 mice were used for all experiments. All
procedures involving experimentation on animals were
approved by the Bioethical Committee of Universidad
Andres Bello and were conducted in accordance with
the guidelines of the National Fund for Scientific and
Technological Research (FONDECYT-Chile). Mice had
access to water and food ad libitum in a 12:12 h light/
dark cycle.

Perfusion and postfixation
Animals were anesthetized (100 μg ketamine + 10 μg
xylazine in 10 μl saline/g), and then transcardially
perfused with saline, followed by 4 % paraformalde-
hyde (PFA, Sigma-Aldrich) in 0.1 M PBS. Brains were
removed and placed in 4 % PFA in PBS for 24 h at
room temperature, dehydrated in 30 % sucrose and
kept at 4 °C until analysis.

Tissue sectioning
After dehydration, brains were sectioned on a cryostat
(Leica Microsystems) and collected in ice-cold-PBS in
multiwell dishes as previously described [52]. Tissue sec-
tions were sequentially collected in six sets of serial
slices of 40 and 60 μm thickness, therefore, each set con-
tained slices covering the entire length of the hippocam-
pus and corresponds to a representative sampling of the
whole hippocampus.

Immunofluorescence
Immunodetection of neuronal markers was carried out as
previously described [53, 54]. Primary antibodies used
were: rabbit anti-doublecortin (Cell Signaling Technology
Inc.), monoclonal anti-NeuN (Millipore), goat anti-FZD1
(R&D Systems), goat anti-FZD1 (LifeSpan Biosciences,
Inc.), rabbit anti-SOX2 (Cell Signaling Technology Inc.),
monoclonal anti-GFAP (Sigma-Aldrich), monoclonal anti-
Nestin (Millipore), rabbit anti-Ki67 (Abcam). As second-
ary antibodies, Alexa (Molecular Probes) and DyLight
(Abcam) conjugated antibodies were used. NucBlue (Life
Technologies) was used as nuclear dye. Slices were
mounted on gelatin-coated slides with Fluoromont-G

(Electron Microscopy Sciences). Double-labeled sections
were analyzed by confocal laser microscopy (Olympus FV
1000). Image analysis and z-projections were made with
ImageJ software (NIH, USA).

Isolation and culture of mouse AHPs
AHPs were isolated from the hippocampus of 6-week-
old C57/BL6 mice and cultured in monolayers as pre-
viously described [35]. Cell suspension was plated in
pre-treated plates coated with poly-D-lysine and lam-
inin and cultured in proliferation medium consisting
of Neurobasal A (Invitrogen) supplemented with B27
without vitamin A, Fungizone (Invitrogen), Glutamax
(GIBCO), 100 U/ml penicillin and 100 μg/ml strepto-
mycin and the growth factors FGF-2 (20 ng/mL,
Alomone labs) and EGF (20 ng/mL, R&D systems).

Transfection of AHPs and N2a cells
AHPs and N2a cells were transfected using Lipofecta-
mine 2000 (Invitrogen) 2 days after plating in 24-well
culture plates at a density of 20 × 104 and 40 × 104 cells
per well respectively. Briefly, 0.5 μg of DNA and 0.75 μl
of Lipofectamine 2000 were mixed in 100 μl Optimem
(GIBCO). After 20 min the DNA-Lipofectamine 2000
reagent complex was added to the cells. For AHPs the
media was replaced after 1 h at 37 °C with proliferation
medium. For N2a cells the medium was replaced after
4 h for Dulbecco’s modified Eagle’s medium (GIBCO),
supplemented with 10 % FBS (GIBCO), 100 U/ml peni-
cillin and 100 μg/ml streptomycin. AHP and N2a cells
were fixed with 4 % PFA, 4 % sucrose in PBS after 96 h
or 48 h respectively.

Immunoblot analysis
N2a cells were homogenized in RIPA buffer (10 mM
Tris/HCl pH 7.4, 5 mM EDTA, 1 % NP-40, 1 % sodium
deoxycholate and 1 % SDS) supplemented with a prote-
ase inhibitor mixture (1 mM PMSF, 2 μg/ml of aproti-
nin, 1 μg/ml of pepstatin and 10 μg/ml of benzamidine)
and phosphatase inhibitors (25 mM NaF, 100 mM
Na3VO4, 1 mM EDTA and 30 μM Na4P207). Homoge-
nates were maintained on ice for 30 min and then cen-
trifuged at 1000 g for 5 min (4 °C) to remove nuclei and
large debris. Protein concentration on supernatants was
determined using the BCA Protein Assay Kit (Pierce).
Proteins were resolved in 10 % SDS/PAGE, transferred
to a PVDF membrane and incubated overnight at 4 °C
with primary antibodies. Primary antibodies used were:
goat anti-FZD1 (R&D Systems), rabbit anti-β-actin
(Cytoskeleton, Inc), mouse anti-β-catenin (Santa Cruz
Biotechnology, Inc.), rabbit anti-α-tubulin (Santa Cruz
Biotechnology, Inc.). The reactions were followed by incu-
bation with peroxidase-conjugated secondary antibodies
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(Pierce) and developed using the ECL technique (Western
Lightning Plus ECL, PerkinElmer).

Reverse transcriptase and quantitative real-time PCR
(qRT-PCR)
Total RNA was extracted using TRIzol reagent (Life
Technologies) and reversely transcribed into comple-
mentary DNA (cDNA) using M-MuLV reverse tran-
scriptase (New Englands BioLabs). qRT-PCR was
performed using Brilliant II SYBR Green QPCR master
mix (Agilent Technologies). Primers used were: FZD1:
5′-GGCCTGAAGATATGGAGTG-3′ (forward) and 5′-
GGGGGAAGAAAGTAGGTTGC-3′ (reverse); Prox1: 5′
-CAGCGGACTCTCTAGCACAG-3′ (forward) and 5′ –
GCCTGCCAAAAGGGGAAAGA-3′ (reverse); NeuroD1
5′ –CCTGATCTGGTCTCCTTCGTA-3′(forward) and
5′ –CAAGAAAGTCCGAGGGTTGA-3′ (reverse); GAP
DH: 5′-CATGGCCTTCCGTGTTCCTA-3′ (forward)
and 5′-CCTGCTTCACCACCTTCTTGAT-3′ (reverse).
GAPDH: 5′-CATGGCCTTCCGTGTTCCTA-3′ (forward)
and 5′-CCTGCTTCACCACCTTCTTGAT-3′ (reverse).
mRNA levels were calculated using 2ΔΔCT method and nor-
malized to GAPDH gene.

Retrovirus production and stereotaxic injection
To knockdown FZD1 an inverted and self-complementary
hairpin DNA oligonucleotides encoding a short-hairpin
RNA targeting mouse FZD1 mRNA were chemically syn-
thesized (Life Technologies), aligned and cloned into the
retroviral vector pSIREN-RetroQ (Clontech) that co-
express the fluorescent protein ZsG. The control shRNA
was provided by manufactures (Clontech). Oligos used to
construct the shRNA targeting mouse FZD1 were: 5′-G
ATCCGGGTGGTGTGCAACGACAAGTTTTCAAGAG
AAACTTGTCGTTGCACACCACCCTTTTTTACGCG
TG-3′ (forward); 5′-AATTCACGCGTAAAAAAGGGT
GGTGTGCAACGACAAGTTTCTCTTGAAAACTTGT
CGTTGCACACCACCCG-3′ (reverse).
Retrovirus particles were prepared as previously de-

scribed [55] with some modifications. HEK293T cells
were plated 5 × 106 cells per 100 mm plate for a total of
ten plates, and after 24 h were co-transfected with
13.5 μg shRNA-expressing retroviral vectors, 9 μg pack-
aging (pCMVgp) and 4.5 μg envelope (pCMV-VSV-G)
vectors using polyethylenimine 18 mM pH 7. After 16 h
medium was replaced by fresh medium. Retrovirus-
containing supernatant was harvested 60 h post-
transfection, centrifuged to eliminate cell debris, filtered
through 0.45 μm cellulose acetate filters, and concen-
trated by two rounds of ultracentrifugation. Retroviral
pellet was resuspended in PBS and aliquots were imme-
diately stored at −80 °C. Titers were determined by
transducing HEK293T cells with 3-fold serial dilutions of

concentrated retrovirus and measuring the ZsG expres-
sion of infected cells 48 h after transduction.
For retrovirus injection into the dentate gyrus of 2-

month-old mice, 1.5 μL of shRNA-expressing retrovi-
ruses were stereotaxically injected into the dentate gyrus
using the following coordinates: 1.5 mm lateral; 2 mm
anterioposterior; 2.3 mm ventral from bregma as previ-
ously described [55]. Retroviruses used in this study lack
nuclear import mechanisms, thus viral integration
occurs only in proliferating cells [56].

Differentiation, migration and morphological analyses
To analyze neuronal differentiation of newborn cells, an-
imals were sacrificed 2 or 4 weeks wpi Brain sections
were processed for immunostaining and analyzed by
confocal laser microscopy. z-stacks of ZsG-positive cells
were carried out to analyze expression of neuronal
markers. Images were acquired with a 60X objective and
a z-axis interval of 1 μm. For quantification, all ZsG-
positive cells in one set of tissue sections (see tissue sec-
tioning) were analyzed. Image analysis and z-projections
were made with ImageJ software (NIH). To analyze mi-
gration of newborn neurons, GCL thickness was esti-
mated by using NeuN staining and considered as 100 %.
Migration within the GCL at 4 wpi was evaluated for all
ZsG +NeuN+ in one set of tissue sections (see tissue
sectioning). For morphological analysis at 4 wpi, images
of ZsG +NeuN+ were acquired with a 60X objective and
a z-axis interval of 0.5 μm. Branching reconstruction,
analysis of total dendritic length and number of intersec-
tions were made using the NeuronJ plugin. Sholl analysis
was performed using the NIH ImageJ software with the
Sholl analysis plug-in. Dendrite intersections were
assessed at radial distances of 10 μm from the soma. For
these analyses, all ZsG +NeuN+ cells in 3–4 sets of
tissue sections were used.

Statistical analyses
Statistical analyses were performed using Prism5 soft-
ware (GraphPad Software Inc.). To compare averages be-
tween two groups the unpaired Student’s t-test was used.
For Sholl analysis two-way ANOVA was used followed
by Bonferroni post-test. In all graphs the data represent
the mean ± SEM. Number of animals per experimental
group or number of neurons analyzed in each experi-
ment is indicated in Figure legends.
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