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Abstract

Acute ischemic stroke causes significant chronic disability worldwide. We designed this study to clarify the
mechanism by which hypothermia helps alleviate acute ischemic stroke. In a middle cerebral artery
occlusion model (4 h ischemia without reperfusion), hypothermia effectively reduces mean infarct volume.
Hypothermia also prevents neurons in the infarct area from releasing high mobility group box 1 (HMGBT1),
the most well-studied damage-associated molecular pattern protein. By preventing its release, hypothermia
also prevents the typical middle cerebral artery occlusion-induced increase in serum HMGB1. We also found
that both glycyrrhizin-mediated inhibition of HMGB1 and intracerebroventricular neutralizing antibody
treatments before middle cerebral artery occlusion onset diminish infarct volume. This suggests a clear
neuroprotective effect of HMGB1 inhibition by hypothermia in the brain. We next used real-time
polymerase chain reaction to measure the levels of pro-inflammatory cytokines in peri-infarct regions.
Although middle cerebral artery occlusion increases the expression of interleukin-1( and tissue necrosis
factor-q, this elevation is suppressed by both hypothermia and glycyrrhizin treatment. We show that
hypothermia reduces the production of inflammatory cytokines and helps salvage peri-infarct regions from
the propagation of ischemic injury via HMGB1 blockade. In addition to suggesting a potential mechanism
for hypothermia’s therapeutic effects, our results suggest HMGB1 modulation may lengthen the therapeutic
window for stroke treatments.

Keywords: Acute ischemic stroke, High mobility group box 1 (HMGBT1), Inflammatory cytokines, Penumbra,
Hypothermia, Glycyrrhizin

Abbreviations: BBB, Blood brain barrier; CCA, Common carotid artery; DAMP, Damage-associated molecular pattern;

DAPI, 4,6-diamidino-2-phenylindole; ECA, External carotid artery; ELISA, Enzyme-linked immunosorbent assay;

HMGBT1, High mobility group box 1; ICA, Internal carotid artery; IL-13, Interleukin-103; IV-tPA, Intravenous tissue
plasminogen activator; MCAO, Middle cerebral artery occlusion; RAGE, Receptor for advanced glycation end-products;
TLR4, Toll-like receptor 4; TNF-q, Tissue necrosis factor-a; TTC, 2,3,5-triphenyltetrazolium chloride

Introduction

Traditional stroke treatments comprise aspirin, surgery,
and thrombolysis [1-3]. If they can be rapidly applied,
intravenous tissue plasminogen activator (IV-tPA) and
intra-arterial thrombolysis are the most effective treatments
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for ischemic strokes [4]. Although it has long been
recognized that treatment should begin within 3 ~ 4.5 h of
stroke onset [3, 5], circumstances prevent many patients
from receiving the most effective treatments within the
optimal time interval [6, 7]. Thus, new adjunctive
treatments that extend this critical therapeutic window will
be invaluable in improving outcomes for patients with
ischemic brain injuries.

The ischemic penumbra is an important target for
stroke therapeutics. According to its original delineation,
the ischemic penumbra is the region of brain tissue
receiving reduced cerebral blood flow that surrounds the

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-016-0260-0&domain=pdf
mailto:kimhoon@yuhs.ac
mailto:youjsmd@yuhs.ac
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lee et al. Molecular Brain (2016) 9:81

infarct core [8]. If a therapeutic intervention fails, the
ischemic penumbra can also be encompassed into the de-
veloping infarct core [9, 10]. Therapeutic hypothermia has
been suggested as a way to ‘freeze’ the ischemic penumbra
and prolong the therapeutic window for acute ischemic
stroke [11, 12]. Therapeutic hypothermia—accomplished
by cooling a patient’s core body temperature to 32-34 °C
for 12-24 h—offers strong neuroprotection for survivors
of cardiac arrest [13]. Although the therapeutic efficacy of
hypothermia for acute ischemic stroke has not yet been
established in a large-scale clinical trial, several smaller
studies have successfully demonstrated feasibility [14, 15].
In rodent models, hypothermia seems to reduce both
ischemic core and penumbral injuries [16-19].
Hypothermia is known to reduce excitatory neurotrans-
mitter release and free radical production, maintain blood
brain barrier (BBB) integrity, and mitigate ischemia-
induced inflammation [19-22]. Still, the principal
molecular mediator of these neuroprotective effects of
hypothermia is unknown.

Acute ischemic strokes trigger an innate immune re-
sponse, leading to severe inflammation [23]. High mobility
group box 1 (HMGBI), which is released from several
types of cells upon injury, is one of the primary mediators
of this innate immune response [24, 25]. HMGBI is also a
critical mediator of both the primary and secondary
damage caused by ischemic strokes [24-26]. Indeed,
interruption of HMGBI’s role as a damage-associated
molecular pattern (DAMP) protein helps prevent the
propagation of ischemic injury [24]. Extracellular HMGB1
binds to toll-like receptor 4 and receptor for advanced
glycation end-products expressed in immune-competent
cells, neurons, and astrocytes [27, 28]. HMGBI1 binding
acts as a danger signal, activating inflammatory mediators
that then amplify and expand the extent of brain damage
[26]. For example, in glial and endothelial cell, HMGB1
induces the expression of inflammatory mediators, tissue
necrosis factor (TNF)-a and intercellular adhesion
molecule (ICAM)-1 [29]. The upregulation of metallopro-
teinase (MMP)-9 by HMGBLI in neurons and astrocytes
damages blood—brain barrier and expands brain damage
[30]. In stroke patients, serum HMGBI1 levels positively
correlate with stroke severity [26, 31]. These reports sug-
gest that HMGBI is a valuable molecular target for new
adjunctive stroke therapies.

Here we present evidence using a rat middle cere-
bral artery occlusion (MCAO) model of ischemic
stroke that hypothermia inhibits infarct volume
expansion by preventing HMGB1 release from post-
ischemic neurons and diminishes subsequent inflam-
matory responses in the peri-infarct region. This
study clarifies the mechanism by which hypothermia
exerts its therapeutic effects and suggests that further
interventions aimed at blocking the actions of
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HMGBI1 will be valuable additions to stroke treatment
regimens.

Results

Therapeutic hypothermia reduces infarct volume in
post-ischemic brains

In this study, we used a permanent MCAO model to
explore the molecular changes induced by hypothermia
prior to recanalization. We induced hypothermia 15 min
after MCAO surgery and maintained it throughout the
entire 4 h ischemic period (Fig. 1a). We ensured constant
hypo- or normothermia by directly monitoring the core
temperature of each rat. The core temperature of
hypothermic rats fell to 33.0 £ 0.5 °C within 80 min and
remained constant for 4 h following MCAO (Fig. 1b). The
redox indicator 2,3,5-triphenyltetrazolium chloride (TTC)
effectively delineates cerebral infarct volume with
infarcted areas appearing devoid of red staining (Fig. 1c,
see also in Additional file 1: Figure S1). Absent or attenu-
ated staining of MAP2, a cytoskeletal protein that is highly
sensitive to ischemic damage, also delineates a similar
infarct area as the lack of TTC conversion to red-colored
triphenylformazane does (in Additional file 2: Figure S2).
Infarcts induced by 4 h MCAO are significantly diminished
by hypothermia at 33 °C compared with normothermia
(Fig. 1c, see also in Additional file 1: Figure S1). By measur-
ing TTC staining-negative tissue volumes, we found that
mild hypothermia at 33 °C attenuates mean infarct volume
from 256.40 +29.01 mm® to 73.60 + 37.67 mm® (Fig. 1d).
MCAO-induced neurological deficits were evaluated using
behavioral tests and found to be improved by hypothermia
treatment (in Additional file 3: Figure S3). These data
indicate hypothermia protects brain cells against cerebral
ischemic damage.

Therapeutic hypothermia inhibits extracellular release of
HMGB1 from ischemic brain tissue

Upon MCAO-induced ischemic injury, HMGBI is
released from brain cell nuclei, reducing the number of
HMGBI1-positive cells in the ischemic cortex [24, 29].
We too found that HMGB1 immunoreactivity disap-
pears from the cortex of MCAO rats, but that
hypothermia significantly restores HMGBI1 staining in
the post-ischemic cortex. This suggests hypothermia
attenuates the extracellular release of HMGBI1 (Fig. 2a).
We observed that while 30.31 + 1.60 % of 4,6-diamidino-
2-phenylindole (DAPI)-positive cells in the cortex of
ischemic hemispheres (ipsilateral) were also HMGB1-
postive, hypothermia increases this number roughly
two-fold to 65.04 + 3.53 % (Fig. 2b). Next, we performed
an ELISA to measure HMGBI levels in serum samples
obtained 4 h after the onset of ischemia. As expected,
the level of circulating of HMGBI rises after MCAO,
but its rise is significantly attenuated by hypothermia
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Fig. 1 Hypothermia reduces ischemic infarct volume in MCAO rats. a, An illustration of the experimental schedule. b, Body temperature traces in
rats after middle cerebral artery occlusion (MCAQ). ¢, Representative images of 2,3,5-triphenyltetrazolium chloride (TTC) staining results. d, A
quantification of infarct volume measured in TTC-stained brain slices of rats treated with MCAO and/or hypothermia. The number of rats in each
group was as follows: sham (n = 3), hypothermia (n =4), MCAO (n =5), MCAO + hypothermia (n = 4). ### P < 0.001 versus sham alone, ** P <0.01
comparing MCAO with and without hypothermia, one-way analysis of variance (ANOVA) followed by the Bonferroni post hoc test
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(Fig. 3). To evaluate if HMGB1 rise by MCAO affects
neuron directly, we examined whether HMGBI1 is
preferentially depleted in the neuronal marker-positive
cells. We stained rat brain sections with antibodies
against HMGBI1 and the neuronal marker NeuN. In the
ipsilateral sham group, we found that 80.02 +2.27 % of
HMGBI1-positive cells were also NeuN-positive (Fig. 4a
and b). Studies using the in vivo MCAO model and an
oxygen-glucose deprivation in vitro culture model both re-
port similar selective neuronal release of HMGBI [26, 29].
In our MCAO rats, we observed a significant drop in the
percentage of NeuN/HMGB1 double-positive cells to
39.0£2.94 % of HMGBI1-positive cells. This reduction,
too, is dramatically restored by hypothermia—treated rats
show 71.98 +2.72 % NeuN/HMGBI1-double positive cells
(Fig. 4a and b). These results indicate that hypothermia
blocks the release of HMGBI from ischemic rat neurons
post-MCAO.

Glycyrrhizin ameliorates MCAO-induced ischemic brain
injury

Glycyrrhizin is a pharmacological HMGBL1 inhibitor that
has been suggested to bind directly to HMGB1 blocking
its function as a cytokine [32] and to prevent cellular
HMGBI release [33, 34]. In an effort to verify that the

neuroprotection conferred by hypothermia in our experi-
mental MCAO model acts via inhibition of HMGBI1, we
measured the effect of glycyrrhizin treatment on infarct
volume as well as HMGBI1 release. Intra-peritoneal
injection of glycyrrhizin markedly attenuates infarct
volume in the post-ischemic cortex (257.20 +21.93 mm?
in MCAO rats versus 77.35 +27.19 mm? in glycyrrhizin-
treated MCAO rats, P <0.001) (Fig. 5a and b, see also in
Additional file 4: Figure S4). Glycyrrhizin also significantly
increases the percentage of HMGBI1-positive cells in the
ischemic hemisphere (30.23 £1.34 % in MCAO rats
versus 52.17+1.59 % in glycyrrhizin-treated MCAO
rats, P<0.001) (Fig. 5¢ and d). Interestingly, glycyrrhi-
zin inhibits HMGB1 release to levels similar to those
we observed in MCAO rats treated with hypothermia.
Together, these results suggest that the extracellular
release of HMGB1 during an ischemic event is
essential in the spread of ischemic injury and that
therapeutic hypothermia prevents this spread via
inhibition of HMGBI.

Intracerebroventricular injection of HMGB1 neutralizing
antibodies prevents ischemic brain injury

To determine the effect of a more specific inhibition of
HMGBI1 on ischemic injury, we injected 5 pg of a
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neutralizing antibody against HMGB1 into the
intracerebroventricular space of rats. We injected the
HMGBI neutralizing antibody using an infusion pump
over the course of 5 min beginning 30 min prior to the
onset of ischemia. TTC staining after 4 h of ischemia
showed that HMGBI1 neutralizing antibody treatment
reduces MCAO-induced cortical infarct volume (Fig. 5e
and f, see also in Additional file 5: Figure S5). This result
provides further evidence for our hypothesis that
HMGBI inhibition effectively protects the brain against
the spread of ischemic injury.

Both therapeutic hypothermia and glycyrrhizin inhibit
inflammatory cytokine expression in peri-infarct regions
Inflammatory cytokines released from the ischemic
penumbra likely contribute to the extensive damage in
the penumbra after an acute ischemic stroke [35-38].
To determine whether therapeutic hypothermia and gly-
cyrrhizin alter the expression of inflammatory cytokines,
we used RT-PCR to examine the mRNA levels of two
major inflammatory cytokines (i.e., IL-1p and TNF-a) in
the peri-infarct region 4 h after MCAO. We defined the
peri-infarct region or penumbra as tissue within 2 mm
of the infarct border. We decided to use the hindlimb

region of the primary sensory cortex for our penumbral
expression analysis because it consistently fell within the
2 mm range in all the brain slices we used for TTC
staining and because it lies within a region showing
perfusion-diffusion mismatch in a permanent MCAO rat
model [39]. We found that although ischemic injury
increases the expression of interleukin-1p (IL-1p) in the
peri-infarct region, both hypothermia and glycyrrhizin
treatments prevent this increase (Fig. 6a). Similarly,
MCAO-induced ischemic injury increases peri-infarct
tissue necrosis factor-a (TNF-a) expression, but both
hypothermia and glycyrrhizin significantly reduce this
increase (Fig. 6b). These results suggest hypothermia
helps prevent infarct propagation by suppressing
inflammatory cytokine production in peri-infarct regions
via its inhibition of HMGBI.

Discussion

In rodent models of stroke, therapeutic hypothermia
reportedly reduces infarct volume and post-ischemic
inflammation, salvaging much of the ischemic penumbra
[16, 18, 19, 21, 40]. Previously, Koda et al. reported that
hypothermia reduces HMGBI in rat cortical lysates after
bilateral common carotid artery (CCA) occlusion and
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Fig. 3 Hypothermia reduces serum HMGB1 levels in MCAO rats.
ELISA assay for HMGB1 performed on sera drawn from rats 4 h after
sham or MCAO surgery in the absence or presence of hypothermia.
The number of rats in each group was as follows: sham (n=4),
hypothermia (n =4), MCAO (n =4), MCAO + hypothermia (n =4).
#i## P < 0.001 versus sham alone, *** P <0.001 comparing MCAO
with and without hypothermia, one-way analysis of variance
(ANOVA) followed by the Bonferroni post hoc test

hypotension [41]. Although the ischemic models (ie.,
bilateral CCA occlusion with hypotension vs. MCAO)
and duration of ischemic injury (i.e, 120 min reperfu-
sion after 10 min ischemia vs. 4 h MCAO in our study)
were different, both studies support the intriguing new
hypothesis that hypothermia acts to inhibit HMGB1 in
acute ischemic injury. This idea is even more clinically
relevant in light of a recent study showing that serum
HMGBI levels may be a valuable prognostic marker in
stroke patients [31]. It remains unclear, however,
whether hypothermia suppresses HMGBI action at the
site of injury, as well as in adjacent and distant tissues in
vivo. It is also unclear how HMGBI1 participates in
ischemic injury propagation and exactly what the
consequences of its suppression may be. Our current
study is the first direct functional and mechanistic link
between HMGB1 and therapeutic hypothermia in a clin-
ically relevant permanent MCAO animal model.

We have also shown that the HMGBI1 inhibitor
glycyrrhizin attenuates pro-inflammatory cytokines in
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MCAO rat brains just like therapeutic hypothermia
does. This suggests hypothermia’s inhibition of HMGB1
accounts for its suppression of peri-infarct inflammation.
IL-1p and TNF-a dramatically affect infarct evolution in
experimental stroke models [38, 42, 43]. Indeed,
neutralization of IL-1p and TNF-a reduces infarct size
in the MCAO model [44, 45]. Cytokines are produced
either in the peri-infarct region or in numerous mini-pe-
numbras inside the infarct core, and both sources likely
promote the propagation of ischemic damage [46, 47].
According to some reports, IL-1p and TNF-a expression
begin to increase between 4 and 6 h after the onset of is-
chemia [38, 46, 48]. In the permanent MCAO model,
though, a substantial fraction of the penumbra is re-
cruited into the infarct core even 1 h after the onset of
ischemia [38, 49]. This makes it seem unlikely that these
cytokines and the HMGBI that induces them are im-
portant in the evolution of a reversible episode of ische-
mia to an area of irreversible damage. In our real-time
PCR experiments, though, we already observed robust
increases of both IL-1B and TNF-a expression at 4 h of
permanent MCAO induced ischemia. The fact that other
studies generally measure changes in cytokine expres-
sion in whole brain lysates rather than a defined peri-
infarct region [46, 48] may hinder their ability to observe
early and highly localized mRNA changes. Our new data
from the peri-infarct region suggest the involvement of
pro-inflammatory cytokines in infarct development and
ischemic injury propagation much earlier than previ-
ously thought. Hypothermia seems to interfere with
these processes via its inhibition of HMGB1. Our results
also suggest that HMGBI1 inhibitors are worth being
assessed for their ability to act as neuroprotectants in
human ischemic stroke. Glycyrrhizin has been used to
treat chronic hepatitis C infection [50]. However, it ne-
cessitates more pre-clinical and clinical studies to prove
its efficacy and safety in ischemic stroke patients.

One advantage of hypothermia is that it may protect
against ischemic injury even if it is applied after the
ischemic insult [17]. Koda et al. reported that hypothermia
induced after an ischemic event fails to reduce serum
HMGBI levels in rats [41], suggesting that HMGBI1 is
irrelevant for hypothermia’s protective effects. In contrast,
we found that induction of hypothermia 15 min after an
ischemic insult effectively reduces both serum HMGB1 and
infarct volume. Consistent with our results, Liu et al. found
that post-ischemic administration of a neutralizing antibody
against HMGBI protects against ischemic brain injury [51].
This implies that the effectiveness of post-ischemic
hypothermia is indeed related to its inhibition of HMGBI.
We expect that further research into the relationships
between the time of hypothermia application, the extent of
HMGBI release, and the degree of therapeutic effect will
be enormously beneficial.
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This study provides evidence that therapeutic hypothermia
inhibits the propagation of ischemic brain damage by
inhibiting the extracellular release of HMGBI.

Methods

Animal preparation

Healthy male Wistar rats weighing 295-315 g were used
for all experiments. All animal experiments were
performed in compliance with guidelines approved by
the Institutional Animal Care and Use Committee
(IACUC) of Yonsei University Health System and
according to National Institutes of Health guidelines.

Experimental MCAO model

Focal brain ischemia was induced via intraluminal sutur-
ing of the middle cerebral artery [52]. Anesthesia was in-
duced with 5 % isoflurane in a mixture of 0.7 L/min
nitrous oxide and 0.3 L/min oxygen and maintained
using 2 % isoflurane in the same gas mixture. The
external carotid artery (ECA) was ligated and coagulated
after isolating it and its branches. The internal carotid
artery (ICA) was also carefully isolated from the adjacent
vagus nerve. After ligation of the pterygopalatine artery,
the common carotid artery (CCA) was also ligated. Next,

the proximal ICA was loosely tied with a 6-0 black silk
suture, and a microvascular clip was applied across the
distal ICA. After making an incision in the proximal
ICA, an intraluminal 4-0 MCAO suture (403556PK10,
Doccol corporation, Sharon, MA) was inserted and the
loosely tied 6-0 black silk suture on the proximal por-
tion of ICA was tightened. After removing the clip, an
intraluminal 4-0 MCAO suture was advanced from the
proximal ICA lumen in the distal direction to a point
approximately 22 mm beyond the CCA bifurcation. For
drug treatment, glycyrrhizin (100 mg/kg) was injected
intraperitoneally 30 min before the onset of MCAO.

Temperature management

Animals were randomly divided into four groups: sham,
hypothermia, MCAO, and MCAO + hypothermia. In the
hypothermia group, surface cooling was begun 15 min
after ischemic induction by placing ice packs on the rat
torso. Vecuronium (0.9 mg/kg) was injected intramuscu-
larly to inhibit shivering. After the sham and MCAO
surgeries, the target core temperatures were carefully
monitored and maintained for 4 h using a feedback-
controlled heating pad (HB 101, Harvard apparatus,
Holliston, MA) and surface cooling with ice packs.
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Infarct volume measurement

Rats were decapitated under anesthesia 4 h after sham
or MCAO surgery. Coronal sections (2 mm-thick) were
stained with 1 % TTC (T8877, Sigma-Aldrich, St. Louis,
MO) solution at 37 °C for 10 min. After fixation, caudal
and rostral faces of each section was scanned with a flat-
bed scanner. Scanned images were analyzed with Image]J
1.48v (NIH, Bethesda, MD). Infarcted volumes (mm?®)
were calculated by multiplying the total averaged
infarcted area by the section thickness; Thickness x
(caudal area + rostral area)/2.

Enzyme-linked immunosorbent assay (ELISA)

One ml of blood from the right atrium was withdrawn
using a 23-gauge needle into a serum separator tube
(BD, Plymouth, UK), centrifuged for 20 min at 2,000 rpm.
HMGB1 concentrations were determined using the
HMGBI1 ELISA kit (ST51011, IBL International GmbH,
Hamburg, Germany).

Immunofluorescence

Two mm-thick rat brain slices (bregma 0.7 mm to
-1.3 mm) were immersed in a 4 % paraformaldehyde
solution and then cryoprotected with 30 % sucrose in
phosphate-buffered saline (PBS). Sections with a thick-
ness of 20 pm from 0.2 mm to -0.3 mm relative to the
bregma were chosen for staining. Sections were first
permeabilized and then incubated overnight at 4 °C with
an anti-HMGB1 antibody (1:100, ab18256; Abcam,
Cambridge, UK) or an anti-NeuN antibody (1:100,
MAB377; Millipore, Billerica, MA). After washing,
fluorescent dye-conjugated secondary antibodies were

applied. Stained sections were observed under a LSM700
confocal microscope (Carl Zeiss, Jena, Germany).

MAP-2 (microtubule associated protein-2) staining

Two mm-thick brain slices (bregma -1.3 mm to
-3.3 mm) were immersed in a 4 % paraformaldehyde
solution and then embedded in paraffin. Paraffin
sectioning (4 pum-thick) was performed for immunohisto-
chemistry. After deparaffinization, sections were incubated
with an anti-MAP-2 antibody (1:100, M1406, Sigma) at
4 °C. After incubation with HRP-conjugated secondary
antibodies, sections were stained with diaminobenzi-
dine (K-3468, Dako). Images of sections were obtained
using a motorized microscope (BX61VS, Olympus).

Neurobehavioral testing

Hypothermic rats were passively rewarmed to 37 °C for 1 h
after 3 h MCAO and were subjected to neurobehavioral
tests. A modified Garcia 18-point scoring system was used
for the evaluation of neurological deficits [53]. Six
sensorimotor tests (spontaneous activity, symmetry in the
movement of four limbs, forepaw outstretching, climbing,
body proprioception, response to vibrissae touch; each
scored on a scale of 0 ~ 3 or 1 ~ 3) were performed and the
scores given to each rat were summated to derive total
neurological deficit score (the maximum score 18, namely,
healthy rats and the minimum score 3).

Real-time polymerase chain reaction (RT-PCR)

Tissue RNA was extracted using the Hybrid-R kit
(305-010, GeneAll biotechnology, Seoul, Korea).
cDNAs were prepared from 1 pg of total RNA using
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the PrimeScript 1st strand ¢cDNA Synthesis Kit (Takara
Bio, Shiga, Japan). PCR amplification was performed using
the SYBR-Green reagent (Takara Bio).

Statistical analysis

All data are presented as means +s.em. Differences
between groups were analyzed using two-tailed unpaired ¢
tests or one-way analysis of variance (ANOVAs) followed
by Bonferroni post hoc tests for multiple comparisons
between groups. P < 0.05 was considered significant.
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