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ApCPEB4, a non-prion domain containing
homolog of ApCPEB, is involved in the
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Abstract

Two pharmacologically distinct types of local protein synthesis are required for synapse- specific long-term synaptic
facilitation (LTF) in Aplysia: one for initiation and the other for maintenance. ApCPEB, a rapamycin sensitive prion-
like molecule regulates a form of local protein synthesis that is specifically required for the maintenance of the LTF.
However, the molecular component of the local protein synthesis that is required for the initiation of LTF and that
is sensitive to emetine is not known. Here, we identify a homolog of ApCPEB responsible for the initiation of LTF.
ApCPEB4 which we have named after its mammalian CPEB4-like homolog lacks a prion-like domain, is responsive
to 5-hydroxytryptamine, and is translated (but not transcribed) in an emetine-sensitive, rapamycin-insensitive, and
PKA-dependent manner. The ApCPEB4 binds to different target RNAs than does ApCPEB. Knock-down of ApCPEB4
blocked the induction of LTF, whereas overexpression of ApCPEB4 reduces the threshold of the formation of LTF.
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Thus, our findings suggest that the two different forms of CPEBs play distinct roles in LTF; ApCPEB is required for
maintenance of LTF, whereas the ApCPEB4, which lacks a prion-like domain, is required for the initiation of LTF.

Introduction

Unlike short-term memory, long-term memory requires
new protein synthesis for its formation [1-7]. Protein
synthesis occurs in two spatially distinct regions of the
neuron: 1) in the cell body where activity-dependent
transcription and subsequent translation occurs and 2)
in the presynaptic terminals and in the postsynaptic den-
dritic spines where mRNAs are localized and translated
following synaptic activation [8—10]. The second form of
translation is responsible for local protein synthesis,
which is important for both the initiation and the main-
tenance of long-term memory.
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The cytoplasmic polyadenylation element binding pro-
tein (CPEB) has been identified as one key regulator of
the local protein synthesis in Aplysia [6]. The binding of
CPEB to mRNAs regulates the translation of target
mRNAs by regulating their polyadenylation [11-14].
ApCPEB binds to the 3" untranslated region (3" UTR) of
mRNAs that contains conserved cytoplasmic polyadeny-
lation element (CPE) binding site (UUUUUAU) [15].
ApCPEB is locally activated in response to a single pulse
of 5-hydroxytryptamine (5-HT) and is inhibited by rapa-
mycin. Interestingly, ApCPEB has a prion-like domain
that is important for the ability of ApCPEB to form ag-
gregates that are self-sustaining and can maintain the in-
creased level of ApCPEB proteins in the terminals that is
critical for maintaining long-term facilitation (LTF) in
Aplysia sensory-motor neuron synapse [15-17]. When
the translation of the ApCPEB mRNA is blocked locally,
the initiation of LTF at 24 h is intact, whereas the main-
tenance of LTF at 72 h is selectively and specifically im-
paired. One of the major mRNA targets of ApCPEB is
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the actin mRNA, which contains the CPE site on its 3’
untranslated region (3'UTR) and is locally translated
during LTF [15]. ApCPEB has two isoforms, one contains
poly-Q prion domain and the other lacking the prion-like
domain [15, 18]. The maintenance of LTF requires the
form of ApCPEB, which contains the prion domain.

In this study, we identified a new CPEB protein, ApC-
PEB4, in Aplysia kurodai. This protein is homologous to
the mammalian CPEB4. The level of expression of ApC-
PEB4 was increased by 5-HT in a translation-dependent
manner. Unlike ApCPEB, ApCPEB4 bound to specific
RNA in a CPE-independent manner and is required for
the initiation but not for the maintenance of LTF. Over-
expression of ApCPEB4 reduced the threshold of the
LTF induction. In addition, PKA-mediated phosphoryl-
ation of ApCPEB4 was critical for the induction of LTF.
Collectively, these data suggest that ApCPEB4 plays a
key role in regulating the initiation of LTF, while ApC-
PEB is essential for the maintenance of LTF.

Methods
Cloning of ApCPEB4 from Aplysia kurodai
We obtained the ApCPEB4 fragment of Aplysia kurodai
from EST database by searching through custom-made
basic local alignment software. Using this fragment as a
probe, we screened ~1.5 x 10° clones of an Aplysia kuro-
dai cDNA library and isolated several clones encoding
parts of ApCPEB4. Based on the sequences of these
clones, we obtained the full length of ApCPEB4. The
length of coding region was 2064 bp and 664 amino
acids, and it also contained two RNA Recognition Motifs
(Fig. 1a). Using Expasy software (http://www.expasy.org/),
potential PKA phosphorylation sites were searched.

3x CPE or CPE mutant sites were obtained by PCR with
specific primer sets: 3x CPE1, CPE1-D3-S (5'-CGCCCA
AGCTTGCAGCTTTTTATGACACAC AGT TTTTATG
ATGCCACG-3')/CPE1-EI-A (5'-GCATGAATTCGATGG
ATAAAAACGTGGCA CATAAAAACTGTGTGTC-3');
3x CPE2, CPE2-D3-S (5'-CGCCCAAGCTTGCAGCTT T
TA ATG ACA CAC AGT TTT AAT GAT GCC ACG-3")/
CPE2-EI-A (5'-GCA TGA ATT CGATGGATTAAAACG
TGG CATCATTAAAACTGTGTGTC-3'); 3x CPE3, CP
E3-D3-S (5'-CGCCCAAGCTTGCAGCTTTTATAAG
GACACACAGTTTTATAAGGATGCCACG-3")/CPE3-
EI-A (5'-GCATGAATTCGATGGCTTATAAAACGTG
GCATCCTTATAAAA CTGTGTGTC-3"); 3x CPEmtl,
CPEmt1-D3-S (5'-CGCCCAAGCTTGCAGCTTTTTG
TG ACACACAGTTTTTGTGATGCCACG-3")/CPEmt1-
EI-A (5'-GCATGAATTCGATGGACA AAAACGTGGC
ATCACAAAAACTGTGTGTC-3"); 3x CPEmt2, CPEmt2-
D3-S (5'-CGC CCAAGCTTGCAGCTT TTTGGTGAC
ACACAGTTTTTGGTGATGCCACG-3"')/CPEmt2-EI-
A (5'-GCATGAATTCGATGGACCAAAAACGTGGC
ATCACCAAAAACTGTGTGTC-3"). The PCR products
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were separately sub-cloned into HindlII-EcoRI-digested
pcDNA3.1(+) to create pcDNA3.1-3xCPEs.

Kinase assays

A kinase assay was carried out at 30 °C for 30 min in a
final volume of 25 pl of reaction buffer (50 mM Tris-Cl,
10 mM MgCl,, pH 7.5) containing 1 pg substrate,
200 uM ATP, 1 mCi [y**P]ATP and 5 units of PKA cata-
lytic subunit (NEB). Reactions were stopped by adding
SDS-sample buffer and boiling at 100 °C for 5 min.
Then, [*P] phosphate incorporation was analyzed by
SDS-PAGE and a phosphoimager. To confirm the speci-
ficity of phosphorylation by PKA, either 40 uM KT5720
(AG Science) or dimethyl sulfoxide (DMSO) (Sigma)
was added to the reaction mixture.

To examine whether ApCPEB4 is an endogenous sub-
strate of Aplysia PKA, the crude tissue extract from
Aplysia pedal-pleural ganglia was prepared as previously
described [19]. The reaction was carried out at 18 °C for
20 min containing GST-agarose bead binding 1 pg of
GST-ApCPEB4, 10 pg of tissue extract and 1 mCi
[y**P]ATP in extraction buffer. To confirm the specifi-
city of phosphorylation, the crude tissue extracts were
incubated with inhibitors of specific kinases, 40 pM
KT5720 (PKA inhibitor) [20], 20 uM PD98059 (MEK in-
hibitor) or 10 pM chelerythrin (PKC inhibitor), for
10 min. A GST-pull down assay was performed as previ-
ously described [21]. The [%2P] phosphate incorporation
was analyzed by SDS-PAGE and a phosphoimager.

Recombinant protein purification and antibody
production

For the antibody production, the N-terminal 400 bp of
ApCPEB4 was amplified by PCR and ligated into pRSETa
(Invitrogen), a His-tag vector. The His-ApCPEB4-N protein
expression was induced by 2 mM IPTG for 3 h at 37 °C
and purified by a Ni-NTA purification system (Invitrogen).
Polyclonal anti-ApCPEB4 antibodies were raised in mice
using this purified protein. The peptide competition assay
was performed by western blot using the ApCPEB4
antibodies incubated with either 25 pg of purified His-
ApCPEB4-N or 25 pg of BSA as a control at 4 °C
overnight.

RT-PCR, western blot, and immunocytochemistry

To examine the expression of ApCPEB4, an RT-PCR
was performed using the total RNAs from various Aply-
sia tissues or HEK293T cells using gene-specific primers.
For loading control, PCR was performed against S4 for
Aplysia. For the induction control, PCR was performed
against Aplysia CCAAT-enhancer-binding proteins
(ApC/EBP). A western blot was performed in the pleural
ganglia, buccal muscle, and gill extracts. Anti-ApCPEB4,
and anti-actin antibodies were used to detect each
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Fig. 1 (See legend on next page.)
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of control ApC/EBP, two-tailed unpaired t test

Fig. 1 Cloning of ApCPEB4 and its expression in the CNS. a Amino acid sequence of a cloned full-length ApCPEB4. Sequence analysis showed
that ApCPEB4 had two conserved RRMs (underlined), one conserved PKA phosphorylation sites (box). b Alignment of RRM domain of Aplysia
CPEB4 (ApCPEB4), mouse CPEB3 (mCPEB3), mouse CPEB1 (mCPEB1) and Aplysia CPEB (ApCPEB). ¢ The phylogenetic relationship between CPEBs
in different species was determined by ClustalW. d mRNA structure of the ApCPEB4. ApCPEB4 contains ~20 bp 5'UTR (untranslated region), ~2 kb
open reading frame (ORF), and ~1 kb 3'UTR. Arrowed inset indicates the detailed nucleotide sequence of the 3'UTR. Blue underline indicates
hexanucleotide sequence (AATAAA). e Expression pattern of ApCPEB4 mRNA. RT-PCR of total RNA (1 pg) isolated from Aplysia CNS, ovotestis, or
gill with gene-specific primers. Aplysia housekeeping gene S4 was used as a control for the amplification. f Western blotting of ApCPEB4 using
purified GST-fused ApCPEB4 or total lysates from various tissues including pleural ganglion, buccal ganglion and ovotestis. g A representative
Western blot (feft) and quantification (right) of ApCPEB4 in Aplysia pleural ganglia extracts prepared from pleural-to-pedal ganglia exposed to 5
times of 5 min treatment of 5-HT. Total extracts were prepared at indicated times and 20 ug of proteins were blotted with anti-ApCPEB4
antibodies (left, top panel). The same extracts were also blotted with anti-tubulin antibodies as loading controls (left, bottom panel). 5-HT treatment
significantly increased the level of ApCPEB4 in the extracts. **, p < 0.01, two-tailed unpaired t test. h One microgram of total RNA from pleural
ganglia was used for RT-PCR with gene-specific primers. As a stimulation control, we used ApC/EBP, an immediate early gene. ApC/EBP was
transcriptionally enhanced in response to 5-HT stimuli. Aplysia S4 was used as an amplification and loading control. *, p < 0.05 compared to that

protein within the same loaded sample. To examine the
induction level of ApCPEB4 in response to 5-HT,
pleural-pedal ganglia were prepared in a sylgard plate
and then applied with 5 pulses of 5-HT (20 uM for
5 min at 20 min interval). Pleural ganglia were prepared
30 min after final application of 5-HT. For the immuno-
staining of endogenous ApCPEB4, cultured neurons
were washed with cold ASW twice and immediately
fixed with 4 % paraformaldehyde in PBS after either the
application of massed 5-HT (10 uM for 1 h) or 5 pulses
5-HT (10 puM for 5 min) at 20 min interval.. Fixed cells
were washed with PBS and permeabilized with 0.2 %
Triton X-100 in PBS for 10 min. After blocking with 3 %
BSA (Amersham Biosciences, Piscataway, NJ) for 2 h at
room temperature, primary antibodies were treated
(1:500 of anti-ApCPEB4 serum) overnight at 4 °C. The
cells were washed with PBS and treated with secondary
antibody, Cy3-conjugated anti-mouse IgG (Amersham
Biosciences, Piscataway, NJ) for 1 h at room temperature.
Immunostained images were acquired by a confocal laser
scanning microscope (LSM510, Carl Zeiss, Jena, Germany).

mRNA-protein pull-down assay

mRNA-protein pull-down assay was performed as
described previously [22] with small modification. Actin
3'UTR was obtained from Aplysia ganglion cDNA, and
Luciferase-1904 (Luc-1904) was obtained by oligomer
annealing and subcloned into pGL3UC vector (Promega)
[23]. The biotin labeled RNA was prepared by in-vitro
transcription with T7 RNA polymerase (Promega) using
the nucleotide analog Bio-17-ATP and Bio-11-CTP
(Enzo). Each biotinylated RNA was analyzed by agarose-
gel electrophoresis and quantified by nano-drop.
HEK293T cells overexpressing Flag-tagged target pro-
teins were lysed using lysis & binding buffer containing
50 mM Tris—HCl (pH 7.6), 150 mM NaCl, 5 % glycerol,
0.1 % Triton X-100, 1 mM DTT, 0.2 mg/mL heparin,
0.2 mg/mL yeast tRNA, 0.25 % BSA, protease inhibitor
cocktail (Roche), and 40 U/mL RNasin (Promega). 8 pg

of biotinylated RNAs were mixed with pre-cleared
200 pg (0.2 mg/mL) of 293 T cell lysate and incubated
on a rotator for 1 h at 4 °C. 30 pl of NeutraAvidin
Agarose Resin (Thermo) was added to each tube, and
the mixture was further incubated for 2 h. Beads were
washed five times with washing buffer containing
50 mM Tris—HCl (pH 7.6), 150 mM NaCl, 5 % glycerol,
0.1 % Triton X-100, 1 mM DTT and 40 U/mL RNasin.
Western blots were performed with mFlag-M2 antibody
(1:2000, Sigma).

Cell cultures and microinjection

Primary culture of Aplysia sensory neurons and cocul-
ture of sensory-to-motor neurons were made as de-
scribed previously [24-26]. Briefly, Abdominal and
central ganglia were dissected from Aplysia kurodai (50-
100 g) and incubated at 34 °C for 1.5~2.5 hin 1 % pro-
tease (type IX, Sigma) dissolved in isotonic L15/ASW
(1:1) media (ASW: 460 mM NaCl, 10 mM KCl, 11 mM
CaCl,, 55 mM MgCl,, and 10 mM HEPES, pH 7.6).
After a thorough washing with ASW several times to re-
move residual protease, the ganglia were incubated at
18 °C for at least 3 h in L15/ASW to allow for recovery
from heat shock. LFS motor neurons were dissected
from the abdominal ganglia and cultured in a solution of
50 % Aplysia hemolymph in isotonic L15 media. The
next day, pleural sensory neurons were isolated from the
pleural ganglia and cocultured with LFS motor neurons
and maintained at 18 °C in an incubator for 3 days to
allow time for the formation and stabilization of synaptic
connections. Microinjection of DNAs and double-strand
RNAs into Aplysia neurons was done by air pressure as
described elsewhere [27, 28].

Electrophysiology

The LFS motor neuron was impaled with a glass micro-
electrode filled with 2 M K-acetate, 0.5 M KCl,
10 mM K-HEPES (10-15 MQ), and the membrane po-
tential was held at -80 mV. The excitatory postsynaptic
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potential (EPSP) in the motor neuron was evoked by
stimulating the sensory neurons with a brief depolarizing
stimulus using an extracellular electrode. The initial EPSP
value was measured 24 h after microinjection. The cultures
then received one pulse or five pulses of 10 uM 5-HT for
5 min at 15-min interval to induce LTF. The amount of
synaptic facilitation was calculated as a percentage change
in EPSP amplitude recorded after the 5-HT treatment
compared with its initial value before treatment.

Results

Cloning of ApCPEB4-like protein, a homologue of
mammalian CPEB4

As an initial step in investigating the role of other CPEBs
in Aplysia, we obtained an expressed sequence tag (EST)
clone homologous to the conserved RNA recognition
motif (RRM) of mammalian CPEB2-4 family from the
Aplysia kurodai EST database [29]. Using this EST clone
as a probe, we carried out a library screening and cloned
a full-length ¢cDNA of a novel Aplysia CPEB (Fig. 1la).
We named the clone ApCPEB4 as it is 99 % identical to
CPEB4-like gene in the genomic database of A. califor-
nica (NCBI accession #, XP005089812). ApCPEB4 has a
unique N-terminus and two conserved RRM on the C-
terminus [15, 30] (Fig. 1a). Unlike the long form of ApC-
PEB, which was cloned previously [18], ApCPEB4 does
not have a prion poly-Q domain. ApCPEB4 has a poten-
tial PKA phosphorylation site (RRST, consensus
sequence (RRX(S/T)) outside the RRM domains (Fig. 1a).
Even though the sequence was not identical, the overall
phylogenetic analysis of the phosphorylation site and the
RRM domain of ApCPEB4 revealed that ApCPEB4 is
homologous to mammalian CPEB2-4 and Drosophila
Orb2 (Fig. 1b and c). The amino acid sequences of the
ApCPEB4 RRM domain are 83.0 % identical to mouse
CPEB2, 82.0 % to mouse CPEB3, 80.7 % to mouse
CPEB4, 77.4 % to Orb2, 34.4 % to mouse CPEBI, 32.7 to
Orbl and 31.0 % to ApCPEB, respectively. These ana-
lyses suggest that ApCPEB4 is homologous to the
members of the mammalian CPEB2-4 family. Interest-
ingly, the ApCPEB4 3' untranslated region (UTR)
(~1 kb) contains the nuclear polyadenylation hexanu-
cleotide sequence (Fig. 1d).

We next examined the expression of ApCPEB4 in
various Aplysia tissues by Reverse Transcription-
Polymerase Chain reaction analysis (RT-PCR). ApCPEB4
was expressed in the extracts of central nervous system
(CNS) and other tissues including gill and ovotestis
(Fig. le). Western blot analysis detected significant
bands with the size of ~100 kDa and ~70 kDa in both
purified proteins and protein extracts from Aplysia
pleural ganglia, respectively (Fig. 1f). Taken together,
these data indicate that ApCPEB4 is another neuronal
CPEB protein that belongs to CPEB family in Aplysia.
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ApCPEBA4 is synthesized in response to 5-HT signaling

We next asked whether the expression of ApCPEB4 is
regulated in response to 5-HT. We found that the level
of ApCPEB4 protein in the ganglia extracts was signifi-
cantly increased by either spaced (5 times pulses of
5 min each) (Fig. 1g) or massed (2 h) application of 5-
HT onto the intact pleural-to-pedal ganglia, both of
which are known to induce long-term facilitation (Add-
itional file 1: Figure S1). The increase in protein level
was not transcription-dependent, because ApCPEB4
RNA transcript was not increased by 5-HT treatment
(Fig. 1h).

Transcription-independent increase of ApCPEB4 sug-
gests that 5-HT signaling may regulate translation of
ApCPEB4 mRNA or stability of ApCPEB4 protein. We
first examined whether ApCPEB4 mRNA was present
and localized at the distal neurite. When the 3'UTR of
ApCPEB4 was added at the end of the cDNA sequence
of a reporter gene - nGFP (nuclear GFP)- the GFP signal
was observed at the distal neurite (Fig. 2a). This sup-
ports the idea that the 3'UTR of ApCPEB4 is sufficient
for the localization and translation of the mRNA at the
distal neurite. We next cut off the cell bodies of cultured
sensory neurons, and stimulated the isolated neurites for
1 h with 10 uM 5-HT. We found that ApCPEB4 immu-
noreactivity was increased about 2 fold in the stimulated
neurites compared with neurites treated with vehicle-
(vehicle, 100.0 +14.4 %, n=6 versus 5-HT, 186.8 +
17.8 %, n=6; * p<0.05, one-way ANOVA; F=12.73,
Tukey’s post-hoc test.) (Fig. 2b). This increase is also ob-
served in the neurites treated with pulsed 5-HT (5 min
of 10 uM 5-HT, 5 times; vehicle, 100.0 + 46.1 %, n =43
versus 5x5-HT, 128.8 £ 5.9 %, n = 60; two-tailed unpaired
¢t test, p<0.01). The up-regulation of ApCPEB4 was
blocked by emetine (100 pM), a non-selective protein
synthesis inhibitor (vehicle, 100.0 + 14.4 %, n =6; 5-HT,
186.8 + 17.8 %, n = 6; emetine, 98.24 £26.9 %, n=5; *, p
<0.05; n.s., not significant; one-way ANOVA; F =12.73,
Tukey’s post-hoc test) (Fig. 2b). Conversely, the induc-
tion of ApCPEB4 was not affected by the transcriptional
inhibitor, actinomycin D (50 uM) (actD, 244.3 + 20.7 %,
n="7; p>0.05, one-way ANOVA; F = 12.73, Tukey’s post-
hoc test.) (Fig. 2b). These results together suggest that 5-
HT signaling enhances translation, but not transcription
of ApCPEB4 mRNA in the stimulated neurites.

Two distinct translational mechanisms are known to
be recruited during 5-HT-mediated synaptic facilitation
in Aplysia: rapamycin-sensitive and -insensitive ones
[31]. Since ApCPEB4 was translated in the isolated neur-
ites, we further tested whether this translational induc-
tion is sensitive to the rapamycin. When the rapamycin
(20 nM) was added together with 5-HT on the isolated
neurites, translational induction of ApCPEB4 was not
blocked, indicating that translation of ApCPEB4 is
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Fig. 2 ApCPEB4 expression is increased by the activation of 5-HT signaling in the isolated neurites. a ApCPEB4 3'UTR enhances local translation of
reporter cONA. The reporter gene nGFP (nuclear GFP) expression, which normally occurs in the nucleus (control), was observed at the distal
neurite in the presence of the 3'UTR of ApCPEB4 (+ApCPEB4-3'UTR). b Immunostaining for ApCPEB4 showed significant induction of ApCPEB4
following 5-HT application in the isolated neurites. The induction of ApCPEB4 was blocked by concurrent treatment of emetine, not by
actinomycin D (actD). *, p < 0.05; n.s., not significant, one-way ANOVA; F =12.73, Tukey's post-hoc test. ¢ Concurrent treatment of KT5720, a PKA
inhibitor, significantly blocked the induction of ApCPEB4 following 5-HT treatment, while the rapamycin (rapa), a blocker for mTOR-dependent
protein translation, has no effect on the ApCPEB4 induction. **, p < 0.05; ***, p < 0.001; one-way ANOVA; F =9.23, Tukey's post-hoc test
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rapamycin-insensitive (Fig. 2c). Rapamycin-insensitive,
but emetine-sensitive local translation requires protein
kinase A (PKA) activity for the initiation of synapse-
specific LTF [31, 8]. Translation of ApCPEB4 was
blocked by KT-5720 (PKA inhibitor, 5 uM) (Fig. 2c),
raising the possibility that the translation of ApCPEB4
might be critical for the initiation of LTF (vehicle, 100.0
+2.5 %, n=10 versus 5-HT, 150.4 +13.7 %, n=14; ** p
<0.05; KT-5720, 86.4 + 10.8 %, n = 13; rapamycin, 146.7
£95 %, n=13; * p<0.05 ***, p<0.001; one-way
ANOVA; F =9.23, Tukey’s post-hoc test).

RNA binding specificity of ApCPEB4

A growing body of evidence suggests that mammalian
CPEB1 and CPEB2-4 family have different target RNAs.
For example, CPEB1 has higher affinity to CPE site on
the 3'UTR of target mRNAs, but CPEB3-4 are believed

to recognize specific RNA secondary structure [23]. We
tested whether Aplysia CPEB proteins, ApCPEB and
ApCPEB4, also show difference in RNA binding proper-
ties. We first generated five different target RNA con-
structs containing three types of three-repeated (3x)
CPE sites (CPE1 (UUUUUAU), CPE2 (UUUUAUU) and
CPE3 (UUUUAUAAG) or two types of 3x CPE mutant
sites (CPEmtl (UUUUUGU) and CPEmt2
(UUUUUGGU)) (Fig. 3a). ApCPEB4 did not bind to any
CPE or CPE mutant site, whereas ApCPEB bound to
CPE sites but not to CPE mutant sites (Fig. 3b). These
results indicate that ApCPEB4 and ApCPEB have differ-
ent RNA binding properties. We tested this idea further
by using the CPE site of the 3'UTR of Aplysia actin,
which is a target mRNA of the ApCPEB [15]. Interest-
ingly, ApCPEB4 did not bind to CPE site in the 3'UTR
of Aplysia actin, which contains a well-known CPE site
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Fig. 3 RNA binding specificity of ApCPEB4 and ApCPEB. a RNA sequences of CPE1, CPE2, CPE3, CPEmt1, and CPEmt2. b A full-length of ApCPEB4
did not bind to any CPEs and CPEmts (feft), whereas a full-length of ApCPEB significantly bound to CPE1, CPE2 and CPE3 but not to CPEmt1 and
CPEmt2 (right). ¢ A full-length of ApCPEB4 only bound to 1904 sequence but not to 3" UTR of both neuronal actin (left). On the other
hand, a full-length of ApCPEB bound to 3" UTR of neuronal actin, but not to 1904 sequence (right)

(UGUAUUUUUUAUACAAUGUU), whereas ApCPEB
showed specific binding to the 3"UTR of actin (Fig. 3c).
Instead, ApCPEB4 bound to 1904 U-rich sequence
(AAAGAGGAUUUGUGUUUUUCAGGAC), which was
designed as a target mRNA for mammalian CPEB3-4 [23]
(Fig. 3¢). These results suggest that ApCPEB4 is similar to
mammalian CPEB3-4 family in its RNA-binding proper-
ties. Overall, these results suggest that in its target select-
ivity ApCPEB4 is functionally closer to the mammalian
CPEB3-4 family and is different from ApCPEB.

ApCPEBA4 is critical for the initiation of LTF

Previous reports found that ApCPEB is required for the
maintenance of LTF [15]. We thus examined whether
ApCPEB4 plays any specific function during LTF in
Aplysia by knocking down ApCPEB4 transcripts in Aply-
sia sensory neurons. We generated double-stranded (ds)
RNAs against N-terminal sequences of ApCPEB
(dsApCPEB) and ApCPEB4 (dsApCPEB4). Each ds RNA
was injected into cultured sensory neurons, and the pro-
tein level of ApCPEB4 in neurites was measured by im-
munocytochemistry. Baseline expression as well as 5-
HT-mediated translation of ApCPEB4 was significantly
blocked in neurons injected with dsApCPEB4, but not in
the naive neurons or neurons injected with dsApCPEB
(Naive: no treatment, 100.0 +4.9 %, n =26 versus 5-HT
treatment, 120.9 +5.6 %, n=28; two-tailed unpaired ¢
test, ** p<0.01; dsApCPEB: no treatment, 97.1 +7.8 %,
n =24 versus 5-HT treatment, 119.8 + 6.3 %, n = 21; two-
tailed unpaired ¢ test,* p <0.05; dsApCPEB4: no treat-
ment, 78.5+5.3 %, n=19 verse 5-HT treatment, 90.4 +
5.5 %, n =20; two-tailed unpaired ¢ test, N.S. (p > 0.05))

(Fig. 4a). These data indicate that dsApCPEB4 specific-
ally blocks both endogenous expression and 5-HT-
induced expression of ApCPEB4 in Aplysia sensory
neurons.

We then examined whether ApCPEB4 is required for
LTF. Depletion of ApCPEB during 5-HT exposure to
5%x5HT blocks the maintenance, beyond 24 h but not
the initiation, of the 5-HT-induced LTF [15] during the
first 24 h. Interestingly, LTF measured after 24 h was
significantly impaired in neurons injected with dsApC-
PEB4, but not in neurons injected with dsApCPEB or
dsLuci (dsLuci, 98.7 £ 17.4 %, n=11; dsApCPEB, 82.3 +
27.2 %, n=11; dsApCPEB4, 20.5 + 18.5 % EPSP change,
n =12; dsLuci vs. dsApCPEB4, * p <0.05, F =3.83, one-
way ANOVA with Tukey’s post-hoc test) (Fig. 4b), indi-
cating that ApCPEB4 is involved in the initiation of LTF.
This result suggests that the regulation of protein syn-
thesis mediated by ApCPEB4 is critical at the initial
stage of LTF formation, whereas ApCPEB is critical for
the long-term maintenance of LTF.

Overexpression of ApCPEB4 reduces the threshold of LTF
induction

We further examined a specific role of ApCPEB4 in in-
duction of LTF by overexpressing it directly in sensory
neurons of sensory-motor cocultures (Fig. 4c). We found
that 1x 5-HT (10 uM, 5 min), which normally induces
short-term facilitation (STF), induced LTF by overex-
pression of ApCPEB4, but not EGFP in sensory neurons
(EGFP, 21.1 +20.4 %, n=11; ApCPEB4 + EGFP, 111.0 +
27.5 % EPSP change, n = 13; two-tailed unpaired t-test,
** p<0.05) (Fig. 4d). These results suggest that the
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ApCPEB4 induced LTF by 1x 5-HT treatment. As a control, EGFP was expressed. Bar graph represents the means + SEM of the percent change in

EPSP amplitude. **, p < 0.01, two-tailed unpaired t test

overexpression (artificial induction) of ApCPEB4 re-
duced the threshold of LTF induction and thus induced
LTF with single 5-HT stimulus, further supporting the
idea that the translational induction of ApCPEB4 is crit-
ical for the formation of LTF in Aplysia.

Phosphorylated ApCPEB4 by PKA is critical for LTF
induction

Previous report showed that ApCPEB is not phosphory-
lated by PKA [15]. On the other hand, ApCPEB4 pos-
sesses one conserved putative PKA phosphorylation site
on the 294" threonine residue (Fig. 1la). Thus, we
hypothesized that the function of ApCPEB4 might be

regulated by PKA-mediated phosphorylation. We first
performed an in vitro kinase assay. Purified GST-
ApCPEB4 fusion proteins were phosphorylated by the
catalytic subunit of PKA in vitro (Fig. 5a). The phos-
phorylation was reduced in the non-phosphorylatable
mutant form of ApCPEB4 (ApCPEB4 T294A), in which
294™ threonine was replaced by alanine (Fig. 5a). These
results indicate that the 294" threonine of ApCPEB4 is
a potential PKA phosphorylation site. In addition, we
found that ApCPEB4 was phosphorylated by Aplysia
neuronal cell lysate in a PKA-dependent manner
(Fig. 5b), indicating that ApCPEB4 is a genuine substrate
of endogenous PKA in Aplysia neurons.
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We next asked: Is the phosphorylation of ApCPEB4 by
PKA critical for the induction of LTF? If the phosphoryl-
ation of ApCPEB4 on the 294th threonine is critical, a
mutant form ApCPEB4(T294A) should act as a domin-
ant negative inhibitor. We therefore overexpressed the
mutant ApCPEB4 (T294A) in Aplysia sensory neurons
cocultured with motor neurons and examined the effect
of its overexpression on LTF. We found that LTF was
completely blocked in the synapse overexpressed with
ApCPEB4 (T294A) in sensory neurons, whereas expres-
sion of ApCPEB4-WT control had no effect on LTF
(ApCPEB4 (WT), 75.0 £29.4 %, n =10 versus ApCPEB4
(T294A), -15.4 £ 17.0 % EPSP change, n =5, unpaired t-
test, * p <0.05) (Fig. 5¢). Taken together, these data indi-
cate that phosphorylation of ApCPEB4 by PKA is re-
quired for the induction of LTF in Aplysia.

Discussion

In this study, we cloned a novel protein ApCPEB4,
which is related to ApCPEB. Whereas ApCPEB is critical
for maintenance, the translational increase of ApCPEB4
was critical for the formation of LTF. Moreover, overex-
pression of ApCPEB4 reduced the threshold for the LTF.
In addition, phosphorylation of ApCPEB4 by PKA was
required for the LTF formation. Combined, our results
suggest that the two different CPEBs cooperate in

different stages during LTF to first initiate and then
maintain long-lasting synaptic facilitation.

ApCPEBA4 is essential for the initiation of LTF: different
ApCPEBs regulate distinct target mRNAs during LTF

Our data revealed an involvement of ApCPEB4 in the
initiation of LTF, and that the overexpression of ApC-
PEB4 reduces the threshold of LTF induction. This is in
contrast to Aplysia CPEB, which regulates the mainten-
ance of LTF at 72 h. Thus the two ApCPEBs play dis-
tinct roles in 5-HT-induced LTF.

How do these two ApCPEBs regulate LTF formation
and maintenance differentially? One plausible explan-
ation is the presence of the prion-like structure in the
molecule. The persistence of synaptic plasticity and
memory have been found to be mediated by the prion-
like CPEB such as ApCPEB in Aplysia, orb2 in Drosoph-
ila, and CPEB3 in rodent [15, 22, 32]. Synaptic plasticity
is mediated by the increase in the aggregation of the
prion-like translational regulator ApCPEB or mamma-
lian CPEB3. Therefore, these aggregates serve as func-
tional prions and regulate local protein synthesis
necessary for the maintenance of long-term memory. In
fact, only antibodies that are specific to the aggregated
form block the maintenance of long term facilitation.
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Another plausible explanation is that these two
ApCPEBs have different RNA binding specificity. We
found that ApCPEB but not ApCPEB4 binds to CPE
sequence as well as 3" UTR of actin in CPE-dependent
manner (Fig. 3). By contrast, ApCPEB4 bound to a dif-
ferent U-rich sequence, the 1904 sequence, which is a
synthetic binding sequence for mammalian CPEB3-4,
but not a canonical CPE (Fig. 3) [23]. In fact, mamma-
lian CPEB1 and mammalian CPEB2-4 also have different
target mRNAs to regulate translation for different stages
of synaptic plasticity via CPE site-dependent and-
independent manners, respectively [23]. In contrast to
our results, it has been reported that mammalian CPEB4
seems to be dispensable for hippocampus-dependent
plasticity and learning and memory [33]. However,
unlike to Aplysia and Drosophila, which have two types
of CPEB, mammalian has four CPEB family including
CPEB1-4, which might compensate other CPEBs.

These observations, suggest that activated ApCPEB
and ApCPEB4 may regulate protein synthesis of two
distinct groups of mRNAs, one group of mRNAs
containing CPE sites for the maintenance of LTF and
another group mRNAs containing CPE-independent
sites for the initiation of LTF. It would be interesting to
further discriminate target mRNAs used for distinct
phases of LTF that are translated by ApCPEB and
ApCPEB4, respectively.

PKA-dependent activation of ApCPEB4

In Xenopus oocytes, CPEBL1 is phosphorylated by the kinase
Aurora A (Eg2) at a canonical LD (S/T)R site [34, 35], and
the phosphorylation of CPEB1 binds to cleavage and polya-
denylation specificity factor (CPSF) to induce release of
PARN from the ribonucleoprotein (RNP) complex, thereby
enabling Germ-line-development factor 2 (Gld2) to
elongate poly(A) tailing by default [35]. On the other hand,
ApCPEB has been found not to be phosphorylated but to
be increased in the amount of protein expression to en-
hance the affinity to CPSF [15]. Interestingly, ApCPEB4 is
regulated differentially from ApCPEB. ApCPEB4 is directly
phosphorylated by PKA on its canonical LD(S/T)R site.

In Aplysia, PKA is critical for both synapse-specific and
cell-wide facilitation induced by 5-HT signaling. PKA phos-
phorylates many components required for LTF formation
in Aplysia such as cAMP response element-binding protein
(CREB), synapsin, Aplysia Activating Factor (ApAF), and
Cell Adhesion Molecule-Associated Protein (CAMAP)
[36—40]. Although we do not provide direct evidence, our
data provide further insight into the mechanism of how the
long-lasting forms of synaptic plasticity can be initiated via
PKA-mediated phosphorylation and local translation of
ApCPEB4. ApCPEB4 might connect PKA signaling to the
local protein synthesis, which is required for the induction
of more sustained synaptic activation, by means of the
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enhanced expression of target mRNAs of ApCPEB4 to sup-
port 5-HT-induced LTF.

Possible roles of ApCPEB4 in synapse-specific LTF

As shown in Fig. 2, ApCPEB4 protein can be localized in
neurites. In addition, we previously reported that
ApCPEB4-EGFP could form RNA granules within the
neurites in Aplysia sensory neurons [41]. Combined,
ApCPEB4 can be localized in neurites and involved in
local protein synthesis.

During synapse-specific LTF, local protein synthesis is
required for two distinct phases of LTF: initiation and
maintenance [8, 31]. For the maintenance of synapse-
specific LTF, a rapamycin-sensitive local protein synthe-
sis is required [8, 31]. One essential molecule which is
locally synthesized in a rapamycin-sensitive manner is
ApCPEB. ApCPEB regulates local translation of many
specific mRNAs containing CPE sites including actin
mRNA to sustain the synaptic facilitation for periods up
to 72 h by supporting persistent structural and
functional changes of the synapses [42]. However, for
the initiation of LTF, a second, rapamycin-insensitive,
emetine-sensitive component of local protein synthesis
is required in synapse-specific LTF [31]. Our data
illustrate that local induction of ApCPEB4 by 5-HT
treatment is rapamycin-insensitive and emetine-
sensitive. In addition, we also found that one pulse of 5-
HT produced LTF in ApCPEB4-overexpressing sensory
neurons. It is therefore possible that overexpression of
ApCPEB4 combined with one pulse of 5-HT may be
sufficient to produce the retrograde signal required for
LTF induction. Overall, ApCPEB4 may be a key regula-
tor required for generating the retrograde signal in initial
local protein synthesis during synapse-specific LTF.
Although it is still possible that ApCPEB4 may be
involved in the rapamycin-insensitive, emetine-sensitive
intermediate-term facilitation (ITF) [43, 44], it would be
interesting to further dissect this possibility in a
synapse-specific form of LTF.

In this study, we investigated the molecular and
cellular function of a novel CPEB isoform in Aplysia,
ApCPEB4. ApCPEB4 was translated and increased by
stimuli inducing LTF and is required for the formation
of LTFE. Overexpression of ApCPEB4 reduced the thresh-
old for LTF induction, and phosphorylation of ApCPEB4
by PKA was critical for the induction of LTF. ApCPEB4
and ApCPEB have distinct RNA binding selectivity:
ApCPEB4 did not bind to the CPE sequence in actin
mRNAs to which ApCPEB binds, whereas ApCPEB4
bound to non-CPE U-rich RNA sequence that was a
target of mammalian CPEB2-4. Taken together, these
results indicate ApCPEB4 plays a key role in the
initiation of LTF in Aplysia, in parallel with the key role
ApCPEB has in the maintenance of LTF.
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Additional file

Additional file 1: Figure S1. A representative Western blot (left) and
quantification (right) of ApCPEB4 in Aplysia pleural ganglia extracts prepared
from animals exposed to 5-HT in vivo for 2 h. Total extracts were prepared
at indicated times and 20 pg of proteins were blotted with anti-ApCPEB4
antibodies (left, top panel). The same extracts were also stained with Coo-
massie blue as loading controls (left, bottom panel). (PDF 49 kb)

Abbreviation

3'UTR: 3" untranslated region; 5-HT: 5-hydroxytryptamine; ApAF: Aplysia
activating factor; ApC/EBP: Aplysia CCAAT-enhancer-binding proteins;
CAMAP: Cell adhesion molecule-associated protein; CNS: Central nervous
system; CPE: Cytoplasmic polyadenylation element; CPEB: Cytoplasmic
polyadenylation element binding protein; CPSF: Polyadenylation specificity
factor; CREB: cCAMP response element-binding protein; EST: Expression
sequence tag; Gld2: Germ-line-development factor 2; ITF: Intermediate-term
facilitation; LTF: Long-term facilitation; LTP: Long-term potentiation;

PABP: The poly(A) binding protein; PARN: Element contain poly A
ribonuclease; PKA: Protein kinase A; RNP: Ribonucleoprotein; RRM: RNA
recognition motif; RT-PCR: Reverse transcription-polymerase chain reaction;
STF: Short-term facilitation
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