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The role of melatonin in the onset and
progression of type 3 diabetes
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Abstract

Alzheimer’s disease (AD) is defined by the excessive accumulation of toxic peptides, such as beta amyloid (Aβ)
plaques and intracellular neurofibrillary tangles (NFT). The risk factors associated with AD include genetic mutations,
aging, insulin resistance, and oxidative stress. To date, several studies that have demonstrated an association between AD
and diabetes have revealed that the common risk factors include insulin resistance, sleep disturbances, blood brain barrier
(BBB) disruption, and altered glucose homeostasis. Many researchers have discovered that there are mechanisms common
to both diabetes and AD. AD that results from insulin resistance in the brain is termed “type 3 diabetes”.
Melatonin synthesized by the pineal gland is known to contribute to circadian rhythms, insulin resistance, protection of
the BBB, and cell survival mechanisms. Here, we review the relationship between melatonin and type 3 diabetes, and
suggest that melatonin might regulate the risk factors for type 3 diabetes. We suggest that melatonin is crucial for
attenuating the onset of type 3 diabetes by intervening in Aβ accumulation, insulin resistance, glucose metabolism,
and BBB permeability.
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Introduction
Alzheimer’s disease (AD) is an age-related neurodegen-
erative disorder that is characterized by the abnormal
aggregation and accumulation of toxic peptides resulting
in beta amyloid (Aβ) plaques and intracellular neurofib-
rillary tangles (NFT) [1]. According to recent reports,
the number of patients with AD will be over 13.8 million
by 2050, which will place a tremendous burden on society
globally [2–4]. The onset of AD is linked to various causes,
such as genetic mutations [5, 6], sex [7], lipid metabolism
[8–11], aging [12–14], and diet [9, 15]. AD pathology
results from excessive oxidative stress, synaptic loss, neur-
onal cell death, impaired insulin signaling, and abnormal
glucose metabolism [16–18]. Cohort studies have demon-
strated that type 2 diabetes (T2DM) increases the risk of
dementia and results from common risk factors associated
with dementia, including insulin resistance and hypergly-
cemia [19]. Many patients with metabolic diseases, such as
cardiovascular disease, diabetes, and obesity, are reported

to have a progressive decline in cognitive function, leading
to the development of AD [20, 21]. One meta-analysis
showed that diabetes significantly increases the risk for AD
in elderly people [22]. Owing to the common risk factors
between diabetes and AD, recent studies have proposed
that AD is a brain-specific type of diabetes, which they
termed “type 3 diabetes” [17, 23–25].
Melatonin (N-acetyl-5-methoxytryptamine) is mainly

secreted as a neurohormone by the pineal gland [26]. It
plays a role in various physiological functions, including
circadian rhythm regulation, antioxidant activities, and
the regulation of mitochondrial function [27–30]. Given
that sleep disorders frequently occur in up to 45% of
patients with AD [31–33], melatonin is an important
hormone for the treatment of AD since it corrects ab-
normal sleep patterns [34, 35]. In AD, melatonin levels
are decreased in the cerebrospinal fluid (CSF) compared
to those in the normal population [36, 37]. Several studies
have demonstrated that melatonin reduces Aβ accumula-
tion [38], tau hyperphosphorylation [39], synaptic dysfunc-
tion [40], and blood brain barrier (BBB) permeability [41].
Moreover, melatonin attenuates insulin resistance [42],
and regulates glucose homeostasis [43, 44]. In this review,
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we summarize the therapeutic functions of melatonin in
type 3 diabetes from various perspectives.

The risk factors for diabetes contribute to the onset and
progression of Alzheimer’s disease
Insulin resistance leads to cognitive decline
Diabetes is characterized by insulin resistance, diminished
pancreatic beta-cell function, and abnormally high glucose
levels [45]. Diabetes is commonly classified into two types,
namely, type 1 (T1DM) and T2DM [45]. T2DM occurs
more frequently in the global population than T1DM and
is accompanied by insulin resistance, hyperglycemia, cog-
nitive decline, and impaired circadian rhythms [46, 47].
T2DM is known to be associated with cognitive impair-
ments [48], and is commonly used as an index for the
development of vascular dementia [49], and AD [50, 51].
The high prevalence of central nervous system (CNS) dis-
eases in patients with diabetes has already been revealed
by global reports [52–55]. The onset and progression of
AD is associated with the capacity of the brain to utilize
glucose for energy production [56, 57]. In the CNS, insulin
signaling plays central roles in the cognitive dysfunction
found in AD [58]. Insulin is known to be neuroprotective
and has powerful effects on memory [59]. Previous studies
have shown that deficiencies in insulin receptors (IRs) in
the brain, a factor implicated in insulin resistance, leads to
memory dysfunction [18, 60]. IRs are localized in cerebral
regions, such as the hippocampus, amygdala, and septum
[61, 62]. AD patients show an 80% reduction in IRs in
their brains compared to normal subjects [17]. Conse-
quently, insulin signaling is abnormal [63]. Some studies
have demonstrated that the hippocampus regulates the
consolidation of memory via insulin signaling [64, 65].
Based on this evidence, decreased insulin levels were
subsequently found in the CSF of patients with AD and
mild cognitive impairment (MCI) [60, 66, 67]. Aβ accu-
mulation, abnormalities in the cholinergic system, tau
hyperphosphorylation, and damage to neuronal cells con-
tributes to impaired insulin signaling [68, 69]. Insulin recep-
tors deficiency in the AD brain results in insulin resistance
in AD neuropathology [18, 70]. For these reasons, reduced
levels of insulin receptor genes may contribute to the pro-
gression of AD [23, 71]. Moreover, tau pathology in AD is
mediated by impaired tau gene expression owing to the
attenuation in insulin signaling [72, 73]. Insulin resist-
ance in the AD brain reduces the phosphorylation of
phosphoinositol-3-kinase (PI3K), and Akt [72, 73],
which ordinarily function to promote neuronal growth
and survival, and promotes GABAergic transmission
involved in learning and memory [74], and blocks the
accumulation of Aβ [75]. Additionally, insulin resistance in-
creases the activation of glycogen synthase kinase (GSK-3)
[76, 77], which is related to the hyperphosphorylation of
tau and the acceleration of tau misfolding [78]. Indeed,

owing to deficiencies in insulin, the change of GSK-3 activ-
ity leads to the hyperphosphorylation of tau [79], perhaps
unsurprising given what we know about the aberrant acti-
vation of GSK-3β and the resultant Aβ accumulation and
tau protein phosphorylation [80, 81]. Moreover, several
clinical studies have demonstrated a positive correlation
between diabetes and AD [57, 82], and suggested that the
central reasons for this include aberrant insulin signaling
and dementia [58, 83–85]. In in vivo studies, an AD mouse
model showed insulin resistance [24], reduced glucose
metabolism, oxidative stress, and cognitive impairments
[86] following injections of streptozotocin (STZ). In
addition, insulin resistance leads to hippocampal neuronal
loss owing to amyloid neurotoxicity [68], reduced glucose
uptake by inhibiting the expression of glucose transporters
in cell membrane [87], and accelerated amyloid aggrega-
tion during early AD [88]. Consequently, insulin resistance
and impaired insulin signaling are significantly related to
tau hyperphosphorylation and Aβ deposition in AD, and
ultimately contribute to cognitive decline [69] (Fig. 1).

Hyperglycemia triggers BBB disruption leading to cognitive
dysfunction
According to previous studies, hyperglycemia in T2DM
leads to cognitive dysfunction [89–91]. An abnormal
glycemic condition is one of the main causes of BBB
breakdown in patients with diabetes [92, 93]. Several
studies demonstrated that the loss of tight junction proteins
which make up the BBB and the activation of matrix metal-
loproteinases (MMPs) was shown in hyperglycemia in vivo
model [94] and in patients [95, 96]. The BBB is comprised
of brain endothelial cells lining the cerebral microvessels
with astrocytic end-feet processes. The BBB endothelium is
characterized by specific transmembrane transport systems
that control the trafficking of small molecules in and out of

Fig. 1 Insulin resistance triggers cognitive decline. Insulin resistance
increases p-GSK3β phosphorylation, tau hyperphosphorylation,
Aβ aggregation and reduces p-AKT phosphorylation, leading to
cognitive deficits
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the brain parenchyma [97]. Glucose, the primary energetic
source in the brain, can cross the BBB through transporter
proteins, such as facilitative sodium independent trans-
porters (e.g., the glucose transporter [GLUT]) [98, 99]. One
animal study has shown downregulation of BBB glucose
transporters in hyperglycemic mice compared to wild-type
mice [100]. In chronic hyperglycemia conditions, GLUT1
and GLUT3 expression was attenuated in diabetic animal
brain and subsequently aberrant GLUT’s expression trig-
gers neuronal cell damage [100]. In addition, many studies
have reported that the BBB in the diabetic brain has
increased permeability owing to the activation of hypoxia-
inducible factor-1α (HIF-1α) and increased levels of vascular
endothelial growth factor (VEGF) [101, 102]. Hyperglycemia
promotes the production of reactive oxygen species (ROS)
[103, 104] and downregulates glucose transporters in brain
endothelial cells [105]. Moreover, hyperglycemia aggravates
amyloid toxicity, independent of insulin resistance [106].
Numerous studies have demonstrated that diet-induced
hyperglycemia triggers an increase in BBB permeability
and BBB damage [107]. The expression of IgG as the
marker of BBB permeability was increased and tight
junction proteins were attenuated in a hyperglycemia
model [107]. In AD, BBB disruption promotes tau hyper-
phosphorylation [108, 109]. BBB disruption decreases the
expression of glucose transporters [110], promotes ROS
production [111] and increases infiltration of inflammatory
mediators [112]. Tau aggregation is associated with increase
of inflammation [112] and reduction of glucose transporters
[110]. In addition, BBB dysfunction in AD contributes to
Aβ clearance, activates glial cells, and aggravates inflamma-
tion by recruiting leukocytes to the brain [113]. Given this
evidence, hyperglycemia-induced BBB disruption might
play an important role in the onset and progression of
AD (Fig. 2).

Melatonin in AD
Melatonin has been shown to have neuroprotective
effects in a mouse model of AD [114, 115], since it
attenuates Aβ accumulation and synaptic dysfunction
by stabilizing the mitochondria function and inhibiting
DNA damage [38, 40]. Melatonin controls several mo-
lecular signaling pathways, such as PI3/Akt/GSk3β
and hemooxygenase-1 [39, 116, 117], and free radical
scavenging mechanisms [118, 119] in the AD brain. A
recent study demonstrated that melatonin improves
synapse dysfunction via the Notch1/Hes1 signaling path-
way in the hippocampus [120]. Another study suggested
that melatonin inhibits apoptotic mediators and promotes
pro-survival signaling in a model of AD [121]. An animal
study demonstrated that chronic melatonin treatment for
30 days improves memory impairments in the AD mouse
model [117]. Moreover, in patients with AD, melatonin
levels were significantly decreased in the serum and CSF,

and levels of melatonin were considered as a candidate
risk factor for diagnosis of AD [37, 122]. Clinically, mela-
tonin and its agonist have been regarded as treatments for
AD [123, 124]. As mentioned above, melatonin has the
potential to attenuate AD pathology via numerous mecha-
nisms including PI3K/Akt/GSK3β [37] and Notch1 signal-
ing [120], and RAGE/NF-κB/JNK signaling pathway [117].
Future study of the specific mechanisms of melatonin in
the CNS is necessary to identify potential therapeutic so-
lutions for AD.

The relationship between melatonin and type 3 diabetes
Melatonin protects cells against Aβ toxicity and inhibits tau
hyperphosphorylation
Aβ, the main component of amyloid plaques, is believed
to cause memory dysfunction [125]. Melatonin improves
soluble Aβ-induced memory dysfunction and synaptic
dysfunction via the Musashi1/Notch1/Hes1 signaling path-
way [120], suggesting that the modulation of Notch1 could
restore neurogenesis and cognitive function in AD models
[126]. According to the results of an in vivo study, mela-
tonin administration inhibits the expression of amyloid
precursor protein-cleaving secretases in the hippocampus
[127]. In addition, melatonin attenuates the memory im-
pairments induced by Aβ accumulation in a sporadic AD
model [38, 128, 129]. Melatonin inhibits the transcription
of β-secretases via the melatonin receptors in SH-SY5Y
neuronal cells [130]. Melatonin attenuates Aβ-induced
memory dysfunction and tau hyperphosphorylation via
the PI3/Akt/GSK3β pathway in the mouse brain [39].
Melatonin suppresses the activity of GSK3β through ac-
tivation of p-GSK3β (Ser9) in Aβ in vitro model [131].
Moreover, it improves Aβ-induced impairments in hip-
pocampal long-term potentiation (LTP) in rats [132].

Fig. 2 Hyperglycemia leads to cognitive decline. Hyperglycemia
aggravate BBB breakdown, and increase the generation of ROS,
inflammatory response, and Aβ aggregation, ultimately leading to
cognitive decline
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Melatonin inhibits superoxide anion production in micro-
glia under conditions of Aβ toxicity [115]. In addition, it
inhibits memory dysfunction and tau phosphorylation in
rats [133]. Considering the effect of melatonin on Aβ
toxicity and tau hyperphosphorylation in AD, melatonin
may be a key to improving memory function by sup-
pressing the cell damage induced by Aβ toxicity and
tau hyperphosphorylation.

Melatonin protects cells against insulin resistance and
hyperglycemia
Diabetes is accompanied by dysregulation of the circadian
system [134]. This is interesting given that glucose metab-
olism is regulated by the circadian system [135, 136]. In
animals and humans with diabetes, increased insulin levels
and abnormal glucose metabolism triggers aberrant circa-
dian rhythms [42, 137]. One study demonstrated that a
reduction of melatonin levels in serum is linked with high
insulin levels in T2DM rats [42]. Moreover, Sakotnik et al.
suggested that polymorphisms in the melatonin receptor
gene are related to fasting blood glucose levels and in-
creases in the prevalence of T2DM [138]. Several genome
wide studies have shown that specific single nucleotide
polymorphisms of the melatonin receptor 2 (MTNR1B)
locus are related to the high glucose levels found in
T2DM [139–141]. Genome-wide studies have shown that
allelic variations in the melatonin receptor 2 (MT2) con-
tribute to the elevations in fasting glucose levels in plasma,
insulin resistance, and ultimately the risk for type 2 dia-
betes [142, 143]. Type 3 diabetes is related to the preva-
lence of T2DM and results from insulin resistance and
hyperglycemia [144–146]. Therefore, a method of redu-
cing the cell damage induced by insulin resistance and
hyperglycemia is crucial in both diabetes and AD. Mela-
tonin activates the expression of the MT2 receptor, which
can inhibit the secretion of insulin from pancreatic β-cells
[147, 148]. Numerous studies have shown that melatonin
contributes to glucose homeostasis and that low glucose

levels are present in patients with T2DM [137, 149]. A
recent study has shown that loss of the melatonin re-
ceptor contributes to the activation of pancreatic islet
hormones, and hepatic glucose transporters (Glut1 and
2) [150]. Melatonin attenuates the glucose-mediated
release of insulin from pancreatic cells [151]. The reduc-
tion in melatonin secretion induced by nocturnal light
exposure is a crucial factor for T2DM development
[136, 152, 153]. Furthermore, the melatonin receptor 1
(MT1) is involved in the regulation of glucose homeo-
stasis and stimulates the secretion of insulin to induce
glucose uptake [43]. In humans, melatonin administra-
tion attenuates glucose tolerance and insulin resistance
[44]. Melatonin could suppress mitochondrial dysfunc-
tion against insulin resistance in Male Zucker diabetic
fatty rats [154]. Furthermore, melatonin attenuates the
secretion of pro inflammatory cytokines such as interleukin-
6 (IL-6), tumor necrosis factor (TNF)-α, interferon (IFN)-
gamma under insulin resistance condition in high fat diet
mouse [155]. Melatonin is associated with metabolic
pathways involved with the insulin pathway [156–158].
The phosphorylation of IRS-1, leading to the activation
of phosphoinositide 3-kinase (PI-3 K), and SHP-2 protein
was increased by melatonin [159, 160]. In the AD brain,
the disturbance of insulin signaling is linked to the senile
plaques formation [80, 161]. An impaired insulin receptor
signaling triggers the decrease of insulin-mediated activa-
tion of PI-3 K/Akt signaling, resulting in hyperactivity of
GSK-3 that induces tau hyperphosphorylation and Aβ
accumulation [162]. The administration of melatonin res-
cues insulin receptor mechanisms and increases the activ-
ity of PI-3 K/Akt signaling and less Aβ accumulation and
less tau hyperphosphorylation [163] (Fig. 3). One study
suggested that the lack of melatonin by pinealectomy re-
duced insulin sensitivity [164]. The reduction of insulin
levels in T1DM are linked to high melatonin levels in
plasma [165]. Taking these results together, melatonin ap-
pears to be involved in the genesis of diabetes [42]

Fig. 3 Melatonin restores the disruption of insulin signaling in AD. In insulin resistance condition, melatonin activates PI3K/Akt signaling, leading
to the decrease of tau hyperphosphorylation and Aβ accumulation
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accompanied by insulin resistance and high glucose, and
may influence the cognitive dysfunction in diabetes-
induced AD (Fig. 4). In this sense, melatonin may be a key
molecule in the pathogenesis of Type 3 diabetes.

Melatonin protects the BBB against hyperglycemia
Several studies have shown that disruption of the BBB
is strongly associated with cognitive dysfunction in AD
[166, 167]. The BBB is a heterogeneous structure that
consists of various cells important for transferring nutrients
and oxygen into brain, and disruption of the BBB has been
observed in patients with T2DM [168, 169]. Increases in
glucose levels in the blood leads to impaired neurovascular
coupling [170, 171], and increased vascular permeability
[172]. Hyperglycemia-induced increases in BBB permeabil-
ity lead to cognitive decline and the development of AD
[101]. Hyperglycemia-induced ROS results in BBB disrup-
tion and triggers cognitive decline [101]. Dysfunction of
metabolic pathways, owing to BBB disruption in diabetes,
leads to cognitive deficits [173, 174]. In an in vivo study,
STZ-induced diabetes results in increased BBB permeability
[101]. Impaired BBB function in diabetes may be a strong
risk factor for the development of AD [175, 176]. The
excessive generation of ROS in T2DM has been shown to
increase BBB permeability by changing tight junction
protein expression [177, 178]. According to recent studies,
melatonin protects BBB integrity in brain microvascular
endothelial cells against inflammation [179], and protects
against cerebral endothelial cell dysfunction via nicotina-
mide adenine dinucleotide phosphate (NADPH) oxidase-2
[180]. Moreover, melatonin prevents the increase in
BBB permeability by inhibiting matrix metalloproteinase-9
expression [41]. In addition, melatonin protects against the

loss of tight junction proteins and BBB disruption by pro-
moting anti-inflammatory and antioxidant mediators, and
axonal regrowth [29]. Melatonin reduces the oxidative
stress-induced generation of ROS in brain endothelial
cells [181], and ameliorates BBB permeability and nitric
oxide levels caused by oxidative stress [182, 183]. In
addition, melatonin protects against the degradation of
tight junction proteins, BBB disruption, serves as an
anti-inflammatory and angiogenesis regulator, and pro-
motes axonal regrowth under high glucose conditions
[29, 184]. Based on previous reports, melatonin might
alleviate BBB breakdown in diabetes-induced AD by
inhibiting the loss of tight junction and the increase of
BBB permeability (Fig. 5).

Conclusions and prospects
Diabetes-induced AD has been called “type 3 diabetes”
owing to the common risk factors, which include insulin
resistance and hyperglycemia. Here, we reviewed the ef-
fect of melatonin in type 3 diabetes from various angles.
Melatonin influences type 3 diabetes by 1) suppressing
Aβ toxicity and tau hyperphosphorylation, 2) controlling
insulin resistance and hyperglycemia, and 3) preventing
hyperglycemia-induced BBB disruption. Hence, we sug-
gest that melatonin would be a key in attenuating the
pathogenesis of type 3 diabetes.
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Fig. 4 Melatonin improve cognitive decline by regulating insulin
resistance and hyperglycemia. Melatonin controls insulin resistance
and glucose metabolism. Melatonin increases the expression of
glucose transporters such as Glut1 and Glut2. Also, melatonin increase
the secretion of insulin and protects cell damage, and reduces glial
reactivity. Finally, melatonin improves cognitive decline in AD brain

Fig. 5 Melatonin improves cognitive decline by inhibiting BBB
breakdown. Melatonin inhibits the production of ROS and the
vascular permeability and increases axonal regrowth. Melatonin
suppresses BBB breakdown and enhances cognitive decline
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