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Abstract

neurodegenerative diseases such as AD and HD.

Alzheimer's disease (AD) is characterized by neurotoxicity mediated by the accumulation of beta amyloid (AB)
oligomers, causing neuronal loss and progressive cognitive decline. Genetic deletion or chronic pharmacological
inhibition of mMGIuR5 by the negative allosteric modulator CTEP, rescues cognitive function and reduces A3
aggregation in both APPswe/PSTAE9 and 3xTg-AD mouse models of AD. In late onset neurodegenerative diseases,
such as AD, defects arise at different stages of the autophagy pathway. Here, we show that mGIuR5 cell surface
expression is elevated in APPswe/PSTAE9 and 3xTg-AD mice. This is accompanied by reduced autophagy
(accumulation of p62) as the consequence of increased ZBTB16 expression and reduced ULK1 activity, as we have
previously observed in Huntington's disease (HD). The chronic (12 week) inhibition of mGIuR5 with CTEP in
APPswe/PSTAE9 and 3xTg-AD mice prevents the observed increase in mGIuR5 surface expression. In addition,
mGIuR5 inactivation facilitates the loss of ZBTB16 expression and ULK1 activation as a consequence of ULK-Ser757
dephosphorylation, which promotes the loss of expression of the autophagy marker p62. Moreover, the genetic
ablation of mGIuR5 in APPswe/PSTAES mice activated autophagy via similar mechanisms to pharmacological
blockade. This study provides further evidence that mGIuR5 overactivation contributes to inhibition of autophagy
and can result in impaired clearance of neurotoxic aggregates in multiple neurodegenerative diseases. Thus, it
provides additional support for the potential of mGIuR5 inhibition as a general therapeutic strategy for
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Introduction

Alzheimer’s disease (AD) is the most prevalent of all the
neurodegenerative diseases, with an alarming rise in
prevalence as a result of an aging population [1]. AD
presents as progressive memory loss and cognitive
decline and current therapeutic strategies are not cura-
tive with limited efficacy [2, 3]. Beta-amyloid (Af) pro-
tein, a product of amyloid precursor proteins (APP)
cleavage that forms soluble oligomers and fibrillar
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plaques, is considered the principal neurotoxic species in
AD brains along with neurofibirillary tangles comprised
of phosphorylated Tau protein [4—6].

Metabotropic glutamate receptor 5 (mGIuR5) is a
member of the G protein-coupled receptor (GPCR)
superfamily and when activated by glutamate couples to
the heterotrimeric G protein Gog/1; [7]. mGluR5 also
functions as an extracellular scaffold for AB oligomers.
Activation of mGIuR5 by A oligomers leads to the re-
lease of Ca** from intracellular stores and a consequent
disruption in synaptic signaling and function [8—10]. We
have shown that the genetic deletion of mGIuR5 in the

APPswe/PS1IAE9 (APPswe) mouse model of AD
improved cognitive function and reduced AD
pathogenesis [11]. Moreover, the pharmacological
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blockade of mGIuR5 using the mGluR5-selective nega-
tive allosteric modulator CTEP, reduces the development
of AD-like neuropathology; specifically reducing AP sol-
uble oligomer and plaque deposition, in both APPswe/
PSIAE9 and 3xTg-AD (3xTg) mouse models [12]. Simi-
larly, mGIuR5 knockout and pharmacological blockade
results in delayed disease progression and a reduction in
huntingtin pathology in preclinical mouse models of
Huntington’s disease (HD) which we have linked to
increased autophagy via alterations in both Zinc finger
and BTB domain-containing protein 16 (ZBTB16)- and
Unc-51-like kinase 1 (ULK1)-dependent mechanisms
[13, 14]. Specifically, we showed that pharmacological
blockade of mGluR5 in HD mice reduced the expression
of ZBTB16, key component of the ZBTB16-Cullin3-
Rocl E3-ubiquitin ligase complex, leading to rescue of
the key autophagy adaptor ATG14. mGluR5 inhibition
also activated ULK1 that was essential for phosphoryl-
ation of the autophagy factor ATGI13, required for
autophagosome formation [14, 15]. However, it remains
unclear whether alterations in these autophagy pathways
due to aberrant mGIuR5 signaling are also evident in
mouse models of AD.

Here, we show that the reduction in AP burden and
improvement in memory function following mGIuR5
pharmacological antagonism or genetic knockout in
APPswe mice [11, 12], is paralleled by a reduction of in-
creased cell surface mGluR5 expression in APPswe and
3xTg mice as well as the reduction of the autophagy
marker p62 as the consequence of reduced ZBTB16
expression and increased ULK1 activity. These findings
using two different approaches to silence mGIluR5 as
well as two different mouse models of AD further sup-
port the pivotal role of mGIuR5 in AD pathogenesis.

Results

Chronic mGIuR5 antagonism reduces mGluR5 cell surface
expression in AD mouse models

AP oligomers were previously reported to activate
mGIuR5 and trigger their clustering, thereby contribut-
ing to the glutamate excitotoxicity at the neuronal
synapses in the AD brain [8-10]. We have also reported
an elevated mGIuR5 cell surface expression in 12-
month-old APPswe mice. Here, we tested whether ele-
vated mGIuR5 cell surface expression contribute to AD
pathology in another AD model, the 3xTg mouse model.
We also examined whether chronic (12-week) inhibition
of mGIuR5 using CTEP (2 mg/kg) in 9-month-old
APPswe and 3xTg mice could normalize mGIuR5 cell
surface expression and, thereby might contribute to the
favorable outcome of mGIuR5 inhibition on cognitive
function in both mouse models. The highly potent
mGluR5-speciific negative allosteric modulator CTEP
(2-chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy)
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phenyl] imidazol-4-yl] ethynyl] pyridine) was chosen for
this study because it is orally bioavailable, crosses the
blood brain barrier, has a half-life of 18 h and its
analogue, Basimglurant, was proven to be well- tolerated
in phase II trials for major depressive disorder [16, 17].
Coronal brain slices from 12-month-old APPswe, 3xTg
and control mice (C59BIl/6 for APPswe and B6129sf for
3xTg) after 12 weeks of intraperitoneal injection with
either CTEP or saline were employed in a cell surface
biotinylation assay to determine total and cell membrane
expression of mGluR5. We detected an increase in the
cell surface expression of mGIuR5 in the brain slices
from saline-treated APPswe and 3xTg brains when com-
pared to wild-type mice (Fig. 1a, b, d and e). Interest-
ingly, the increase in mGIuR5 surface expression was
reversed in CTEP-treated AD mice and the values were
indistinguishable from controls. No significant change in
the total expression of mGIuR5 was detected in all
groups (Fig. 1c and f). Taken together, these results indi-
cated that chronic antagonism of mGIluR5 with a select-
ive negative allosteric modulator (NAM) could block the
increase in cell surface expression of mGluR5 and thus
may contribute to slowing the progression AD pathology
and improvement in cognitive function.

Pharmacological and genetic silencing of mGIuR5 activate
autophagy via a ZBTB16-regulated pathway

Zhang and colleagues reported a novel pathway through
which GPCR signaling inhibits autophagy. Specifically,
GPCR activation stabilized the expression of the tran-
scription factor ZBTB16, a key component of the
ZBTB16-Cullin3-Rocl E3-ubiquitin ligase, which pro-
moted the degradation of various autophagy adaptor
proteins to inhibit autophagy [18]. Therefore, we wanted
to determine whether silencing mGIuR5 signaling either
pharmacologically or genetically would reduce ZBTB16
expression in 3xTg and APPswe mice to activate
autophagy. We examined brain lysates derived from 12-
month old mice APPswe after 12-week treatment with
either CTEP or saline as well as age-matched APPswe
lacking mGIuR5 (APPswe/mGIuR5™'"). We found that
the expression of the ubiquitin ligase component
ZBTB16 and the autophagy marker p62 were increased
in both saline-treated 3xTg and APPswe mice and that
chronic treatment of these mice with CTEP for 12 weeks
reduced both ZBTB16 and p62 protein expression to
values comparable to wild-type control mice (Fig. 2a and
b). We also detected a reduction in p62 and ZBTB16
expression in APPswe/mGluR5~~ and significantly
lower levels of ZBTB16 in mGIuR5~ compared to
wild-type C57Bl/6 mice (Fig. 2c). Taken together, these
data indicate an obligatory role of mGIuR5 in ZBTB16-
regulated activation of autophagy.
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Pharmacological and genetic silencing of mGIuR5
activates ULK1

ULK family members are ubiquitously expressed ki-
nases that localize to the phagophore membrane upon
nutrient starvation to promote autophagosome forma-
tion [19, 20]. mTOR phosphorylates ULK1 at Ser757
suppressing its kinase activity and autophagy initiation
[15]. mGluR5 is known to activate the mTOR path-
way and it reduced ULK1-dependent activation of au-
tophagy in zQ175 HD mice [14, 21] . Here, we tested
whether blocking mGluR5 could induce autophagy by
activating ULK1 dephosphorylation in 3xTg and
APPswe mouse models of AD. Chronic blockade of
mGIuR5 with CTEP reduced the inhibitory phosphor-
ylation of ULK1 at Ser757 observed in saline-treated
3xTg and APPswe mice (Fig. 3a and b) to values
comparable to corresponding wild-type levels

indicating an increase in ULK1 activity following
CTEP treatment. Interestingly, genetic deletion of
mGluR5 completely abolished ULK1-Ser757 phosphor-
ylation in wild-type and APPswe mice (Fig. 3c).
Together, these findings strongly support the role of
ULK1 in mGluR5-mediated regulation of autophagy
and that mGIuR5 can potentially alter autophagy via
multiple convergent mechanisms and this correlates
with the clearance of proteotoxic aggregates, in this
case B-amyloid plaques.

Discussion

mGIuR5 antagonism using highly-selective mGIluR5
NAMs represents a promising approach to slow disease
progression and proteotoxic protein aggregation in both
AD and HD [12, 14]. In the current study, we provide
further evidence for the pivotal role of mGIuR5 in AD
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pathogenesis by demonstrating an increase in mGIluR5
surface expression in two AD mouse models, the APPswe
and 3xTg models. We also show for, the first time, that the
mGIuR5 NAM CTEP could abolish the increase in mem-
brane delivery of mGluR5 that is correlated with an activa-
tion of autophagy via a ZBTB16- and ULK1- dependent
pathways in both mouse models of AD. Moreover, the
genetic deletion of mGIuR5 in APPswe resulted in similar
outcomes to the pharmacological inhibition with a
mGluR5 NAM and further supports the role of mGIluR5-
mediated regulation of autophagy in the pathology of AD.
The observation that this molecular pathway is similarly
activated in a zQ175 mouse model of HD following treat-
ment with the mGIuR5 NAM, CTEP [14], indicates that
mGluR5 contributes neurodegenerative disease processes
via a conserved mechanism.

This study extends our previous work using both gen-
etic and pharmacological approaches to implicate
mGluR5 in the pathophysiological hallmarks of AD. We
reported that the pharmacological inhibition and genetic
ablation of mGIuR5 corrected spatial memory loss and
reduced formation of AP oligomers and plaques in AD
mice [11, 12]. Here, we provide further evidence for the
role of mGIuR5 signaling in AD by demonstrating an
increase in the delivery of mGIuR5 to the plasma
membrane in brain slices derived from both APPswe
and 3xTg mice mouse models of AD. The increase in
mGluR5 surface expression is particularly interesting as
AP oligomers interact with mGIluR5 and potentially
functions to accelerate A production via the mGluR5- and
Fragile X mental retardation protein (FMRP)-dependent
activation of the amyloidogenic pathway [10, 11]. These AP
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Fig. 3 ULK1 activation plays a role in mGIuR5-dependent activation of autophagy in AD mice. a Representative western blots and mean + SEM of pULK-
Ser757 in brain lysates from 3xTg-AD (3xTg) and control B6129sf mice after chronic treatment with either saline or CTEP (2 mg/kg). b Representative western
blots and mean + SEM of pULK-Ser757 in brain lysates from APPswe/PSTAE9 (APPswe) and control C56BI/6 mice after chronic treatment with either saline
or CTEP or ¢ genetic deletion of mGIURS (MGIURS ). Representative Blots in panel from B and C are from the same blot. Values are expressed as a fraction
of the saline-treated control. pULK-Ser757 is normalized to actin (n =4 for each group). # Significantly different (P < 0.05) from corresponding control for
each AD mouse model, * significantly different (P < 0.05) from saline-treated value. @ significantly different (P < 0.05) from saline treated C57BI/6 or APPswe

J

oligomers also trigger the clustering and activation of
mGluR5 resulting in the release of Ca®* from intracellular
stores, an event that is critical for the neurotoxic signaling
at glutamatergic synapses [8, 9]. The enhanced delivery of
mGIluR5 means that the receptor is more readily accessible
for activation and clustering by AP oligomers, thereby
potentially  accelerating glutamatergic  excitotoxicity,
synaptic loss and AD progression. Thus, CTEP via its
allosteric binding to mGIuR5 may function to disrupt a
proposed Ap oligomer-mediated neurodegenerative positive
feedback loop. The disruption of this feedback loop may
contribute in part to a reduction in the formation of Af
oligomers and plaques resulting in improvement in mem-
ory and cognitive function. Our findings support a critical/
central contribution of pathological mGIuR5 signaling to
the pathophysiology underlying AD.

Studies using transgenic mice with impaired central
nervous system autophagy reported an increase in ubi-
quitinated protein inclusions and neurodegeneration [22,
23]. This observation strongly suggests an obligatory role
of autophagy in neuronal health. Autophagy is a cata-
bolic process that clears cellular organelles and protein
aggregates and defects in autophagy have been increas-
ingly implicated in proteinopathies such as AD, HD and
Parkinson’s disease [24—27]. We have demonstrated that
mGIuR5 signals through a ZBTB16-Cullin3-Rocl E3-
ubiquitin ligase pathway to inhibit autophagy in a zQ175
HD mouse model, which we have correlated with the

accumulation of mutant huntingtin aggregates and dis-
ease progression. mGluR5 blockade with CTEP triggers
the degradation of ZBTB16 to rescue autophagy adaptor
protein ATG14 and activates autophagy that is associ-
ated with a reduction in mutant huntingtin aggregation.
Moreover, mGluR5 blockade reduces ULK1-Ser757
phosphorylation and to allow autophagy adaptor-
initiated autophagosome biogenesis [14]. Similar to HD
mice, in the study we detect a significant elevation in
ZBTB16 and p62 expression, as well as ULK1-Ser757
phosphorylation in both APPswe and 3X-Tg mice that is
significantly attenuated following CTEP treatment. In
addition, we also employ an alternative approach to
knockout mGluR5 in APPswe via the genetic deletion of
mGluR5. This resulted in an even more robust reduction
in ZBTB16, P62 and pULKI1-Ser757 phosphorylation
levels compared to the pharmacological approach. These
findings along with our previous reports showing a
reduction AP oligomers and plaques [11, 12] indicates
that mGIuR5 signaling via ZBTB16 and ULK1 is crucial
to maintain adequate clearance of these proteotoxic
aggregates. Thus, alterations in mGluR5-mediated sig-
naling in the brain is expected to accelerate the process
of neurodegeneration in AD.

In summary, we find that mGIluR5 antagonism repre-
sents an effective approach to slow and potentially re-
verse AD progression both at the receptor level, by
reducing mGIuR5 membrane trafficking, and at the



Abd-Elrahman et al. Molecular Brain (2018) 11:19

signaling level, by activating autophagy. Moreover, find-
ings from this study and our previous work in zQ175
HD mice [14] provide evidence to support a conserved
mechanism of autophagy inhibition downstream of
mGluR5 that potentially reduces the clearance of toxic
misfolded protein species in both AD and HD. This
study also extends on our previous observations that
pharmacologically targeting a single GPCR may be
effective in clearing neurotoxic aggregates through au-
tophagy via a well-tolerated novel therapeutic approach.
These findings warrant further investigation of the role
of ZBTB16- and mTOR-mediated autophagic pathway
in other neurodevelopmental and neurodegenerative dis-
eases in which mGIuR5 has been previously implicated
[28, 29]. This will provide a better understanding of the
common pathophysiological signals in neurodegenera-
tion and ultimately novel therapeutic approaches to tar-
get these aberrant signals.

Materials and methods

Reagents

CTEP was purchased from Axon Medchem. Horseradish
peroxidase (HRP)-conjugated anti-rabbit IgG secondary
antibody was from Bio-Rad(1662408EDU). Rabbit anti-
actin (CL2810AP) was from Cedarlane (Burlington,
Ontario). Mouse anti-P62 (56416) and rabbit anti-
ZBTB16 (39354) antibodies were from Abcam
(Cambridge, Massachusetts). Rabbit anti-mGIuR5 antibody
(AB5675) was from Millipore (Billerica, Massachusetts).
Anti-phospho ULK1-Ser”” (14202) from Cell Signaling
Technology (Danvers, Massachusetts). Reagents used for
western  blotting were purchased from (Bio-Rad
Laboratories, Hercules, California) and all other
biochemical reagents were from Sigma-Aldrich (St. Louis,
Missouri).

Animals

STOCK B6C3-Tg (APPswe/PSEN1AE9)85Dbo/] mice
that carry the human APP with Swedish mutation and
the DeltaE9 mutation of the human presenilin 1 gene
[30], mGIluR5 knockout mice B6;129-Grm5tmI1Rod/]
(mGIuR57"") [31] and 3xTg-AD mice that carry both the
human APP with Swedish mutation and the DeltaE9
mutation of the human presenilin 1 gene along with a
tau P301L mutation [32] were purchased from Jackson
Laboratory (Bar Harbor, ME). APPswe/PS1AE9/
mGIuR5~~ mice were generated by crossing APPswe/
PSIAE9 mice with a C57/Bl6 background, with
mGIuR5~~ C57Bl/6 females. Offspring were tail snipped
and genotyped using PCR with primers specific for the
APP sequence and primers specific for mGIuR5.
Animals were housed in an animal care facility in cages
of 2 or more animals, received food and water ad
libitum and were maintained on a 12-h light/12 h dark
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cycle at 24 °C. Two sets of male APPswe/PSEN1AE9,
3xTg-AD mice and their wild-type control mice (C57Bl/
6 control for APPswe and B6129sf control for 3xTg)
were aged to 9 months and were then treated by intra-
peritoneal injection with a 200 pl volume of either ve-
hicle (saline control) or CTEP (2 mg/kg, final
concentration 20 nM) every 48 h for 12 weeks by a
blinded technician. At the end of the 12-week treatment,
mice were sacrificed by exsanguination and brains were
collected and randomized for biochemical determina-
tions. mGluR5~"~ and APPswe/PS1AE9/mGIuR5~"~ mice
were aged to 12 months and sacrificed by
exsanguination and brains were collected for
biochemical determinations.

Cell surface biotinylation

Cell surface biotinylation was performed as previously
described [7, 11]. Coronal brain slices (350 um) from sa-
line- or CTEP-treated wild-type, APPswe and 3xTg mice
were prepared using a vibratome system (Leica). Slices
were recovered in KREBS buffer (127 mM NaCl, 2 mM
KCl, 10 mM glucose, 1.2 mM KH,PO,; 26 mM
NaH,CO3, 1 mM MgSO,, 1 mM CaCl,, pH 7.4) con-
tinuously gassed with 95%0,/5%CO, for 30 min at 37 °
C. Slices were transferred to tubes and biotinylated for
1 h in 1.5 mg/ml sulfo-NHS-SS-biotin on ice. Slices were
then washed and biotinylation was quenched with
100 uM glycine in HBSS for 30 min on ice. Following
washes in HBSS, tissue was lysed in RIPA buffer (0.15 M
NaCl, 0.05 M Tris—HCI, pH 7.2, 0.05 M EDTA, 1% Non-
idet P40, 1% Triton X-100, 0.5% sodium deoxycholate, 0.
1% SDS) containing protease inhibitors (1 mM AEBSF,
10 pg/ml leupeptin, and 2.5 pg/ml aprotinin). Biotinyl-
ated proteins were then precipitated with NeutrAvidin
beads using equivalent amounts of proteins for each
sample. Biotinylated proteins were subjected to SDS-
polyacrylamide gel (SDS-PAGE) and immunoblotted
with Rabbit polyclonal mGIluR5 antibody (1:1000, dilu-
tion), as described below.

Immunoblotting

Brain hemispheres was lysed in 1.5 ml ice-cold lysis buf-
fer (50 mM Tris, pH 8.0, 150 mM NacCl, and 1% Triton
X-100) containing protease inhibitors (1 mM AEBSE, 10
pg/ml leupeptin, and 2.5 pg/ml aprotinin) and phosphat-
ase inhibitors (10 mM NaF and 500 pM NazVO,) and
centrifuged at 15000 rpm at 4 °C for 15 min. The super-
natant was collected and total protein levels were quan-
tified using Bradford Protein Assay (Bio-Rad).
Homogenates were diluted in a mix of lysis buffer and
B-mercaptoethanol containing 3x loading buffer and
boiled for 10 min at 95 °C. Aliquots containing 25 pg
total proteins were resolved by electrophoresis on a 7.5%
SDS-PAGE and transferred onto nitrocellulose
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membranes. Blots were blocked in Tris-buffered saline,
pH 7.6 containing 0.05% of Tween 20 (TBST) and 5%
non-fat dry milk for 2 h at room temperature and then
incubated overnight at 4 °C with primary antibodies di-
luted 1:1000 in TBST containing 1% non-fat dry milk.
Immunodetection was performed by incubating with sec-
ondary antibodies (anti-rabbit/mouse) diluted 1:5000 in
TBST containing 1% of non-fat dry milk for 1 h. Mem-
branes were washed in TBST and then bands were de-
tected and quantified using BioRad chemiluminescence
system.

Statistical analysis

Means + SEM are shown for each of independent exper-
iments are shown in the various figure legends. Graph-
Pad Prism software was used to analyze data for
statistical significance. Statistical significance was deter-
mined by a series of 2 (strain) x2 (drug treatment)
ANOVAs followed by Fisher’s LSD comparisons for the
significant main effects or interactions.

Abbreviations

3xTg: 3XTg-AD; AD: Alzheimer's disease; APP: Amyloid precursor protein;
APPswe: APPswe/PS1AES; APPswe/ mGIURS™™: APPswe/PS1AE9 lacking
mGIuR5; ATG14: Autophagy-related protein 14; AR: Amyloid beta; CTEP: 2-
chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl] ethy-
nyl] pyridine; FMRP: Fragile X mental retardation protein; GPCR: G protein-
coupled receptor; HD: Huntington’s disease; mGIuR5: metabotropic
glutamate receptor 5; mTOR: mammalian target of rapamycin;

NAM: Negative allosteric modulator; ULK: Unc-51-like kinase; ZBTB16: Zinc
finger and BTB domain-containing protein 16
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