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Abstract

Aim: Maturation abnormalities of the brain cells have been suggested in several neuropsychiatric disorders,
including schizophrenia, bipolar disorder, autism spectrum disorders, and epilepsy. In this study, we examined the
expression patterns of neuronal maturation markers in the brain of a mouse model of dementia with Lewy body-
linked mutant β-synuclein (βS), especially in the hippocampus, to explore whether such brain abnormalities occur
in neurodegenerative disorders as well.

Methods: Quantitative PCR (qPCR) and immunohistochemical analyses were performed using the hippocampus of
14-month-old P123H βS transgenic (Tg) mice to evaluate the expression of molecular markers for maturation of
dentate granule cells.

Results: Based on qPCR results, expression of Tdo2 and Dsp (markers of mature granule cells) was decreased and
that of Drd1a (a marker of immature granule cells) was increased in the hippocampus of P123H βS Tg mice
compared to that in wild-type controls. Immunohistochemical analysis revealed decreased expression of mature
granule cell markers Calb1 and Gria1, along with increased expression of the microglial marker Iba1, in the
hippocampal dentate gyrus region of P123H βS Tg mice. P123H βS Tg mice exhibited immature-like neuronal
molecular expression patterns and microgliosis in the hippocampus. Pseudo-immaturity of dentate granule cells,
associated with neuroinflammation, may be a shared endophenotype in the brains of at least a subgroup of
patients with neuropsychiatric disorders and neurodegenerative diseases.

Keywords: β-Synuclein, Endophenotype, Hippocampus, Immature dentate gyrus, Neurodegenerative disorders

Main text
“Immature dentate gyrus (iDG)” phenotype is commonly
found in several mouse models of neuropsychiatric dis-
orders [1], including schizophrenia/intellectual disability
[2], bipolar disorder [3], and epilepsy [4, 5]. In this
phenotype, almost all granule cells in the adult hippocam-
pal DG are arrested in a pseudo-immature state, in terms
of molecular and electrophysiological characteristics.
More specifically, molecular features of iDG include a de-
crease in expression of mature granule cell markers (e.g.,

tryptophan 2,3-dioxygenase [Tdo2], Desmoplakin [Dsp],
and Calbindin 1 [Calb1] [6]) along with an increase in the
expression of immature granule cell marker (dopamine
receptor D1 [Drd1a]) [1]. iDG-like phenotype was also ob-
served in patients with schizophrenia and bipolar disorder
[7]. As for neurodegenerative disorders, recent studies
revealed that Alzheimer’s disease mouse model showed a
drastic decrease in the expression of Calb1 in adult DG,
suggestive of iDG-like phenotype in the mouse model
[8, 9]. In the present study, we investigated whether a
mouse model of dementia with Lewy body-linked mu-
tant β-synuclein (P123H βS) exhibits iDG-related molecu-
lar features. The P123H βS transgenic (Tg) mouse showed
many behavioral abnormalities, including hyperlocomotor
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activity, impairment of nest building, and impaired spatial
memory, in the middle stage (6–10 months of age), before
the onset of motor dysfunction that became apparent in
the later stage (12–18 months) [10, 11]. In the brain of
these mice, neuritic pathologies such as βS accumulation
and axonal swellings, and astrogliosis were observed
in various regions, including hippocampus, during
the middle to late stage [10]. However, maturation
abnormalities in the brain have not been examined
in these mice.
Whole hippocampus of the mouse (14 months of age)

was dissected out and quantitative PCR (qPCR) analysis
was conducted to examine mRNA expression levels of
Drd1a, Bdnf, Tdo2, Dsp, and Calb1. The detailed
method for qPCR is described in the Additional file 1.
Expression of Drd1a was significantly increased and that
of Bdnf showed an increasing trend in the hippocampus
of P123H βS Tg mice compared to that in wild-type
mice (Fig. 1a, Additional file 1: Table S1). Expression of

Tdo2 and Dsp was significantly decreased in the P123H
βS Tg mice while that of Calb1 was comparable between
P123H βS Tg and wild-type mice. To assess Calb1
expression, focusing on the DG region, we conducted
immunohistochemical analyses (see Additional file for
the detailed method). The results showed a significant
decrease in Calb1 expression in the DG granule cell
layer of P123H βS Tg mice (Fig. 1b, Additional file 1:
Figure S1). Notably, a patch-like reduction of Calb1 im-
munoreactivity was observed in the DG granule cell
layer of P123H βS Tg mice, which may not have been
due to apparent cell loss, since nuclear staining was ob-
served uniformly throughout the DG granule cell layer.
We also found a decrease in immunoreactivity for Gria1,
whose expression increased with maturation of granule
cells [12], but decreased in the DG of typical mouse
models with iDG [12], and in that of P123H βS Tg mice
(Fig. 1c). In addition, immunoreactivity for ionized cal-
cium binding adaptor molecule 1 (Iba1) was increased in

Fig. 1 iDG-like molecular phenotypes in the hippocampus of P123H βS Tg mice. a Results of quantitative PCR. Bar graphs represent relative
mRNA expression levels normalized to β-actin mRNA. Data obtained from two independent experiments were combined and shown as the
mean ± SEM. (n = 8 for wild-type mice and n = 10 for P123H βS Tg mice). *P < 0.05, **P < 0.01 versus wild-type mice. b–d Representative images
(left panels) and the semi-quantitative results (right panels) of immunofluorescence imaging of Calb1 (b), Gria1 (c), and Iba1 (d) in the DG of wild-
type and P123H βS Tg mice. Higher magnification of the boxed area is shown below the corresponding panel (b). Data are shown as the mean
± SEM (n = 4 for each genotype). *P < 0.05, **P < 0.01 versus wild-type mice. Scale bars, 200 μm (b, d) and 500 μm (c). g, granule cell layer; h,
hilus; m, molecular layer
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the DG of P123H βS Tg mice (Fig. 1d), suggesting that
microglia are activated in the DG of these mice.
We found a significant decrease in Calb1 expression in

the DG granule cell layer by immunohistochemical ana-
lysis. However, the extent of this reduction was low relative
to that found in other mouse models with iDG, such as
Camk2a+/− mice, Shn2 KO mice, and mutant Snap25
knock-in mice, whose Calb1 expression in the DG granule
cell layer was almost completely depleted [2–4]. Therefore,
the present qPCR analysis of whole hippocampus samples
might have failed to detect a decrease in Calb1 expression
in P123H βS Tg mice, due to the presence of cells (other
than granule cells) that express Calb1, such as pyramidal
cells in the Ammon’s horn region and particular types of
interneurons that exist throughout the brain. The discrep-
ancy between mRNA and protein levels of Calb1 may also
be accounted for by some post-transcriptional mechanisms
and/or differences in their half lives [13].
Patch-like reduction of Calb1 expression in the DG gran-

ule cell layer was found in P123H βS Tg mice; a similar
phenotype was observed in a mouse model of Alzheimer’s
disease (line J20) [8, 9]. In those papers, it was suggested
that Calb1 downregulation was induced by seizure activity
in patients and mouse models [8, 9]. Patch-like reduction
of Calb1 in the DG has been observed in epilepsy models
[5]. Considering that epileptic seizures have been observed
in P123H βS Tg mice (unpublished observation), seizure
activity might have caused Calb1 downregulation in these
Tg mice. Interestingly, patch-like reduction of Calb1 in the
DG have also been found in adult mice treated with anti-
depressant fluoxetine [14] and electroconvulsive stimula-
tion [15]. Assuming that typical models showing robust
depletion of Calb1, such as Camk2a+/− and Shn2 KO mice
[2, 3], display iDG phenotypes developmentally generated,
there is the possibility that these weaker phenotypes are
features of iDG that are induced by dematuration in adults.
In conclusion, P123H βS Tg mice exhibited iDG-like sig-

natures and microgliosis in the DG. It would be of interest
to determine the time of appearance of the iDG phenotype
in these mice in relation to that of behavioral abnormalities.

Additional file

Additional file 1: Materials and Methods. Table S1. Raw data of qPCR
analysis (average Cq value). Figure S1. Immunohistochemical images
used for quantitative analysis in this study. (DOCX 25253 kb)
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