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Abstract

phosphorylation sites.

The growth cone is essential for nerve growth and axon regeneration, which directly form and rearrange the neural
network. Recently, to clarify the molecular signaling pathways in the growth cone that utilize protein
phosphorylation, we performed a phosphoproteomics study of mammalian growth cone membranes derived from
the developing rodent brain and identified > 30,000 phosphopeptides from ~ 1200 proteins. We found that the
phosphorylation sites were highly proline directed and primarily mitogen-activated protein kinase (MAPK)
dependent, due to particular activation of c-jun N-terminal protein kinase (JNK), a member of the MAPK family.
Because the MAPK/JNK pathway is also involved in axon regeneration of invertebrate model organisms such
Caenorhabditis elegans and Drosophila, we performed evolutionary bioinformatics analysis of the mammalian
growth cone phosphorylation sites. Although these sites were generally conserved within vertebrates, they were
not necessarily conserved in these invertebrate model organisms. In particular, high-frequency phosphorylation sites
(> 20 times) were less conserved than low-frequency sites. Taken together, the mammalian growth cones contain a
large number of vertebrate-specific phosphorylation sites and stronger dependence upon MAPK/JNK than C.
elegans or Drosophila. We conclude that axon growth/regeneration likely involves many vertebrate-specific
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Main text

The growth cone, a highly motile structure at the tip of
extending axons in developing or regenerating neurons
[1], is crucial for accurate synaptogenesis. Therefore,
elucidating the molecular pathways for growth cone
behavior is essential. At present, however, sufficient
molecular information is not available regarding growth
cones in the mammalian brain. We performed a proteo-
mics analysis of mammalian growth cones and charac-
terized approximately 1000 unique proteins [2]; the
results revealed novel molecular mechanisms underlying
nerve growth [1].
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To further investigate molecular signaling in growth
cones, we focused on protein phosphorylation, the most
important regulatory mechanism in many cellular
processes [3]. Phosphoproteomics is a powerful tech-
nique for comprehensive and quantitative identification
of in vivo phosphorylation sites [3]. Thus, we performed
phosphoproteomics analysis of the growth cone
membrane (GCM). From among more than 30,000
phosphopeptides, this analysis identified ~ 4600 different
phosphorylation sites from ~ 1200 proteins [4]. Surpris-
ingly, proline (P)-directed phosphorylation [5] was
predominant, with more than 60% of serine (S) or threo-
nine (T) phosphorylation sites predicted to depend on
P-directed kinases [4]. Bioinformatics analysis suggested
that these frequent P-directed phosphorylation events
were due to mitogen-activated protein kinase (MAPK)
activation. In particular, we found that c-Jun N-terminal
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kinase (JNK) [6] was the major active member of the
MAPK family and was responsible for several heavily
phosphorylated sites [4].

The MAPK family includes extracellular signal-regu-
lated kinase, p38, and JNK, among which JNK appeared to
be the most likely kinase candidate for mammalian GCM
phosphorylation. First, several recent reports showed that
JNK is involved in multiple steps of mammalian brain
development [7-11]. Second, JNK signaling is activated
during axon regeneration, even in Caenorhabditis elegans
[12]. Together, these observations suggest the importance
of JNK signaling in a wide range of organisms.

Thus, to understand and characterize MAPK signaling
in the GCM, we used bioinformatics to examine whether
the phosphorylation sites of the mammalian GCM
proteins that were identified using phosphoproteomics
were conserved within a wide range of animals. If so, the
signaling pathways involving those phosphosites were
expected to be widely conserved from mammals to
nematodes or insects. We first made an evolutionary
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comparison between vertebrates and invertebrates such
as C. elegans and Drosophila, using comparative genom-
ics data in “Ensembl” [13]. Surprisingly, we found that
MAPK-dependent substrates with very frequently phos-
phorylated sites (detected >20 times) were conserved in
vertebrates, but were less abundant in invertebrates;
more than 70% of the very frequent sites were vertebrate
specific (Fig. 1a; also see Additional file 1: Figure S1),
suggesting the importance of JNK signaling in a wide
range of animals. In addition, we classified these MAPK-
dependent phosphoprotein-coding genes using Kinase-
Phos 2.0 [14], a kinase prediction site, into three groups.
We found that the vertebrate-specific phosphoproteins
had more high-frequency sites compared to the evolu-
tionarily older ones (Fig. 1b). Namely, highly MAPK-
dependent sites were conserved within vertebrates, as
were the genes encoding these sites, which newly
emerged in vertebrates (Fig. 1b). Taken together, the data
revealed that the substrates of MAPK signaling in rodent
GCM included many vertebrate-specific proteins and
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Fig. 1 Evolutionary analysis of phosphosites in mammalian GCM using bioinformatics. a Distribution of kinases for P-directed phosphosites that
were more conserved in vertebrates (left) than in invertebrates (right). Invertebrates: C. elegans and Drosophila; Vertebrates: lamprey, zebrafish,
Xenopus, turtle, anole, chicken, and rat. The numbers on the bottom indicate the frequency of the identified phosphopeptide. CK1, CK2, GSK-3,
CDK, and MAPK were predicted by KinasePhos 2.0 against phosphosites conserved in vertebrates to be higher than each phosphoproteomics
score threshold. Note that the predicted MAPK-dependent sites were consistently evolutionarily conserved in vertebrates and accounted for more
than 35% of all sites. In the high-score groups (220 phosphopeptides), the proportion of MAPK phosphorylation sites conserved in invertebrates
was markedly lower. b Comparison of vertebrates and invertebrates regarding MAPK P-directed phosphosites (left) and MAPK P-directed
phosphosite genes (right). I-: the gene has emerged since invertebrates, and the protein has conserved SP/TP residues since invertebrates; V-/:
the gene has emerged since invertebrates, but the protein has conserved SP/TP residues only in vertebrates; and V-V: the gene emerged first

in vertebrates, and the protein has conserved SP/TP residues within vertebrates. The P-directed phosphosites with a high score that were
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vertebrate-specific phosphorylation sites, suggesting that
axonal growth may be controlled by considerably dis-
tinct signaling pathways in vertebrates and invertebrates.
In the case of downstream genes of DLK-JNK signal-
ing in C. elegans axon regeneration [15], few P-directed
substrates were identified in our phosphoproteomics
study [4], suggesting that different molecular mecha-
nisms involving JNK play a role in mammalian axon
growth/regeneration compared to C. elegans, although
JNK is activated in neurons of both organisms. We
conclude that the molecular signaling in mammalian
growth cones for axon growth/regeneration may more
frequently use evolutionarily newer phosphoproteins or
phosphorylated sites that depend on MAPK/JNK, in
addition to older ones that are also present in inverte-
brate phosphoproteins. These newly identified phos-
phorylated sites may have allowed more sophisticated
signaling pathways that are more suitable for neural
network formation in vertebrate brain, where the
neuronal number is much larger than in invertebrates.
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