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Abstract

Bipolar disorder is a major mental illness characterized by severe swings in mood and activity levels which occur
with variable amplitude and frequency. Attempts have been made to identify mood states and biological features
associated with mood changes to compensate for current clinical diagnosis, which is mainly based on patients’
subjective reports. Here, we used infradian (a cycle > 24 h) cyclic locomotor activity in a mouse model useful for
the study of bipolar disorder as a proxy for mood changes. We show that metabolome patterns in peripheral blood
could retrospectively predict the locomotor activity levels. We longitudinally monitored locomotor activity in the
home cage, and subsequently collected peripheral blood and performed metabolomic analyses. We then
constructed cross-validated linear regression models based on blood metabolome patterns to predict locomotor
activity levels of individual mice. Our analysis revealed a significant correlation between actual and predicted
activity levels, indicative of successful predictions. Pathway analysis of metabolites used for successful predictions
showed enrichment in mitochondria metabolism-related terms, such as “Warburg effect” and “citric acid cycle.” In
addition, we found that peripheral blood metabolome patterns predicted expression levels of genes implicated in
bipolar disorder in the hippocampus, a brain region responsible for mood regulation, suggesting that the brain–
periphery axis is related to mood-change-associated behaviors. Our results may serve as a basis for predicting
individual mood states through blood metabolomics in bipolar disorder and other mood disorders and may
provide potential insight into systemic metabolic activity in relation to mood changes.

Introduction
Mood naturally changes over time with variable amp-
litude and frequency, sometimes in an infradian (a
cycle > 24 h) manner [1, 2]. This is often accompan-
ied by changes in physical activity [3]. In bipolar dis-
order, unusual swings in mood and activity levels
from depressive to manic states are core phenomeno-
logical and clinical features. Such exaggerated fluctua-
tions in mood and the related activity can cause
significant distress and/or social and occupational im-
pairment, often leading to high direct and indirect
health care costs [4, 5]. Currently, the clinical assess-
ment and management of these conditions mainly

rely on clinicians’ interview and patients’ subjective
description. To overcome the potential subjective
biases, developing objective and quantitative measures
is expected to compensate for the current procedures.
To this end, substantial efforts have been invested
into predicting mood states of patients with bipolar
disorder based on biological features, such as heart-
beat [6], spontaneous speech [7], and neural activity
measured with functional magnetic resonance imaging
[8]. Meanwhile, molecular omics approaches, such as
metabolomics and proteomics, with which hundreds
of molecules can be targeted simultaneously, are be-
ing applied to gain more complete profiles of a wide
range of biological conditions and diseases [9, 10].
However, such molecular omics-based approaches
have not been well examined to predict mood states.
While mood disorders are considered to be brain
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diseases, the use of peripheral samples has been
desirable for clinical purposes, as the opportunity to
obtain human brain tissues is limited [11].
Previous studies have attempted to detect biomarkers

for mood disorders in the blood by comparing the
metabolomes of patients to control subjects [11–13]. It
is still not well understood whether or to what extent
metabolomic alterations in peripheral blood are related
to the shift of mood states. This may, in part, be due to
the lack of animal models that exhibit behavioral phe-
notypes associated with infradian changes in mood
states. We previously found that mice with the hetero-
zygous knockout of the alpha-isoform of calcium/cal-
modulin-dependent protein kinase II (Camk2a+/− mice)
exhibit various dysregulated behaviors, including exag-
gerated cyclic mood-change-associated activity in an
infradian manner, in which locomotor activity (LA)
spontaneously and recurrently increases and decreases
in a period of approximately 10–20 days [14, 15]. Im-
portantly, changes in the LA were correlated with
changes in depression-like and anxiety-like behaviors
[14], suggesting that Camk2a+/− mice are useful as an
animal model which shows similar infradian oscilla-
tions of mood to those found in patients with bipolar
disorder. CAMK2A is one gene suggested to be a can-
didate for bipolar disorder [16–18], and decreased
CAMK2A mRNA has been found in the prefrontal cor-
tex of patients with the disorder [19]. Camk2a+/− mice
also harbor brain endophenotypes relevant to bipolar
disorder, such as neuronal hyperexcitability [20] and
immaturity [15, 21–23] in the hippocampus and de-
creased brain pH [24]. These findings suggest that
Camk2a+/− mice provide a model for bipolar disorder
which has good face and construct validity [25].
Using the Camk2a+/− mice, we previously showed

that gene expression patterns in the hippocampus, a
brain region implicated in mood regulation, could
retrospectively predict the LA level of individual
mice by using statistical learning algorithm [14]. We
used cross-validated multivariate regression models
to ensure the generalization ability of our prediction
models. Generalization ability is the capacity to pre-
dict unseen samples, and ensuring and improving
the generalization ability of models are believed to
be crucial for practical use, including identification
of subpopulations among patients with mood disor-
ders [26]. In the present study, using this strategy,
we sought to determine whether metabolome pat-
terns in peripheral blood can predict individual LA
levels of the mice, which would have potential for
future translational applications. We also investigated
whether gene expression levels in the brain can be
predicted by peripheral blood metabolome patterns,
aiming to gain insights into the link between

systemic metabolic pathways and the regulation of
brain gene expression in relation to the infradian
mood changes.

Materials and methods
Animals
Thirty-seven adult (> 8 weeks old) male Camk2a+/− mice
were used [14, 15, 27]. Every effort was made to
minimize the number of animals used.

Locomotor activity monitoring and blood sampling
The LA data of Camk2a+/− mice analyzed in this study
were the same as was used in a previous study [14]. Mice
were singly housed with a 12 h light/dark cycle (lights on
at 7:00 a.m.) and access to food and water ad libitum. The
monitoring of LA and blood sampling was performed as
previously described [14]. Briefly, LA was monitored for
72–82 days through a system that automatically analyzes
the distance traveled by a mouse in its home cage [15].
Peripheral blood and brain tissue [14], was collected at
zeitgeber time (ZT) 6–7 (ZT0, lights on; ZT12, lights off)
from mice with short or long distances traveled (assessed
by distance traveled during the 24 h before ZT0 on the
sampling day; Fig. 1a, b). In this way, mice were selected
for the sampling such that their 24 h LA levels varied
among the 37 mice (Fig. 1c). The 24 h LA was defined as
distance traveled during the 24 h between ZT0 on the day
before the sampling and ZT0 on the day of sampling. The
3 h LA was defined as distance traveled in every 3 h win-
dow before sampling (ZT6) (Fig. 1b).
Mice were removed from the home cage, and immedi-

ately euthanatized by cervical dislocation. Blood was col-
lected from the neck in tubes with Na-heparin and
centrifuged (2200×g at 4 °C for 10 min) to prepare
plasma. Plasma samples were stored at − 80 °C until use.

Gas chromatography mass spectrometry (GC/MS) analysis
of blood samples
GC/MS analysis was performed as described previ-
ously [28] using a GCMS-QP2010 Ultra (Shimazu,
Kyoto, Japan) with a fused silica capillary column
(CP-SIL 8 CB low bleed/MS; 30 m × 0.25 mm inner
diameter, film thickness 0.25 μm; Agilent Technolo-
gies, Palo Alto, CA, USA). Data processing was per-
formed as described previously [28]. 2-isopropylmalic
acid was used as an internal standard. Two mice
whose metabolite contents could not be measured
due to unknown reasons were excluded from further
analyses. Hence, LA and metabolome data from 35
mutant mice were processed for correlation and pre-
diction analyses (Additional file 2: Table S1), as
described below.
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Brain gene expression data
Expression microarray data of the hippocampal dentate
gyrus [29] was obtained from the 35 mice mentioned
above. We used data that has been deposited at the
Gene Expression Omnibus (GEO; accession number
GSE68293) [14]. The log2-transformed expression values
were used for the prediction analyses.

Construction of models to predict LA
The linear regression algorithm was used to predict
LA (24 h LA and 3 h LAs; Fig. 1) and gene expres-
sion levels of individual mice from peripheral blood
metabolome patterns using MATLAB [14]. The pre-
diction accuracy was evaluated by the leave-one-out
cross-validation method and the feature selection for
the prediction was conducted by the nested cross-
validation method. Calculation details are included in the
Additional file 1: Supplementary Materials and Methods.

Pathway enrichment analysis
To determine the characteristics of metabolites of interest,
we used the default settings in MetaboAnalyst (version
4.0; http://www.metaboanalyst.ca/) [30], a comprehensive,

web-based tool for metabolomics analysis and interpret-
ation. Some feature names that had not been recognized
in the query were modified if necessary, as suggested in
the instructions.

Results
Locomotor activity can be predicted from blood
metabolomic profiles
Of the 106 metabolites tested, the concentrations of 16
features were correlated with 24 h LA (P < 0.05, Pear-
son’s correlation; Additional file 1: Figure S1). None of
these survived false discovery rate correction for mul-
tiple tests (FDR; q value < 0.1). To determine whether
the metabolome patterns in peripheral blood could
retrospectively predict the 24 h LA of individual mice,
we performed linear regression analysis with the nested
cross-validation method [14]. Independent sets of mice
were used for feature selection from entire set of 106
metabolites and model fitting in the inner cross-
validation loop and testing the model performance in
the outer cross-validation loop. Statistical evaluation of
the prediction accuracy of the model revealed a signifi-
cant correlation between the actual and the predicted
24 h LA (Fig. 2a), indicating that the metabolome

Fig. 1 Experimental workflow. a LA was longitudinally monitored, and blood was taken from each mouse ZT6–7. b 24 h LA, distance traveled
during the 24 h before ZT0 on the sampling day; 3 h LAs, distances traveled of every 3 h window before sampling (ZT6). Black and white bars
indicate dark and light period, respectively. c Variations in 24 h LA. Each dot indicates an individual mouse. Solid lines indicate average 24 h LA
and dashed lines indicate the standard deviations for 35 mice. LA, locomotor activity; ZT, zeitgeber time
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patterns in the peripheral blood quantitatively predict
the 24 h LA of individual mice. Thirty-three out of the
106 metabolites were selected to build the successful
prediction model (Fig. 2b, Additional file 1: Figure S1).

Mitochondrial alterations implicated in infradian
oscillatory LA
The prediction algorithm we used identified metabo-
lome signatures related to infradian oscillatory LA by
weighting metabolites according to their individual

predictive strength (Fig. 2b). Next, we examined the
weighted metabolites that were selected to predict the
24 h LA to gain insight into metabolic alterations re-
lated to changes in infradian oscillatory LA. Pathway
enrichment analysis using a bioinformatics tool Met-
boAnalyst [30] revealed that the set of metabolites ex-
hibited enrichments in the Warburg effect, the citric
acid cycle, and mitochondria-related pathway. These
survived multiple comparison correction (FDR q value
< 0.05; Fig. 2c). Interestingly, all the terms were to

Fig. 2 Metabolome patterns in the peripheral blood can predict 24 h LA in Camk2a+/− mice. a Scatter plot showing a significant correlation
between predicted and actual 24 h LA (N = 35 mice). b Feature preference for constructing the 24 h LA prediction model. c Results of pathway
enrichment analysis for the metabolites used for constructing 24 h LA prediction model. The statistically enriched terms with raw P-value below
0.05 are shown. LA, locomotor activity
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mitochondrial functions (see Discussion), suggesting
that mitochondrial function may change concomi-
tantly with infradian oscillatory LA.

Peripheral blood metabolome predicts LA levels for
longer time periods
To investigate whether metabolome patterns in periph-
eral blood could predict the LA of the past several days,
we constructed models for predicting the LA within the
3 days before sampling using a sliding time window
(window size: 3 h, step size: 3 h; yielding 24 time win-
dows) (3 h LAs; Fig. 1b). The actual and the predicted 3
h LAs were similar within the past 3 days in most mice,
while differences between them were apparent in some
mice (Fig. 3a, Additional file 1: Figure S2). Overall, stat-
istical evaluation of prediction accuracy of the models
detected significant correlations between the actual and
the predicted 3 h LAs in 5 of the 24 time windows after
FDR correction (time windows of 6–9 h: r = 0.46, P =
0.0049; 9–12 h: r = 0.49, P = 0.0025; 21–24 h: r = 0.41,
P = 0.016; 51–54 h: r = 0.41, P = 0.016; 63–66 h: r = 0.51,
P = 0.0017; Fig. 3b–g). The oldest time window with a
significant correlation was from 63 to 66 h before sam-
pling. These results suggest that multivariate patterns of
the metabolome in the peripheral blood hold informa-
tion about LA of at least the past 3 days. Out of the five
time windows mentioned above, metabolites selected
were similar in 3 h LA predictions of 6–9 h and 9–12 h
time windows (as well as the 24 h LA prediction), and
differed in other 3 h time windows (Additional file 1:
Figure S3). Metabolites selected for the prediction of the
oldest 3 h time window (63–66 h LA) were associated
with aspartate-related pathways (unadjusted P < 0.05;
Additional file 1: Figure S4), which differed from those
for 24 h LA prediction (Fig. 2c).

Hippocampal expression levels of the Arntl gene can be
predicted from peripheral blood metabolome
The regulation of mood is thought to involve the hippo-
campus [31, 32] and hippocampal expression of some
circadian genes are closely related to infradian oscillation
of LA in Camk2a+/− mice [14]. Consequently, using a
prediction approach, we asked whether metabolome pat-
terns in peripheral blood are related to hippocampal ex-
pression of circadian genes in relation to mood-change-
associated activity. We used microarray-based gene ex-
pression data in the hippocampus of Camk2a+/− mice
that we had previously obtained from the same mice
whose blood metabolome data was analyzed above [14].
Cross-validated prediction models based on the blood
metabolome data were constructed to predict expression
levels of genes, focusing on seven circadian-related genes
(Lonrf1, Cys1, Hist1h1c, Tef, Ak4, Arntl, and Sfpq), which
were among the genes that were selected to predict the

24 h LA of Camk2a+/− mice [14]. Of the seven genes
tested, Arntl and Sfpq expression levels could be pre-
dicted by blood metabolome patterns, which was deter-
mined by correlations between actual and predicted
expression levels (P < 0.05), and Arntl survived correc-
tion for multiple testing (Fig. 4a, b). Metabolites used for
the successful prediction of hippocampal Arntl expres-
sion levels showed enrichment for mitochondria-related
pathways (Fig. 4c, d).

Discussion
In this study, we demonstrated for the first time that
peripheral blood metabolomics in combination with a
statistical learning algorithm can predict individual levels
of mood-change-related activity using an animal model
showing exaggerated infradian rhythm. It could be sug-
gested that this result is simply a consequence of the
metabolite secretions affected by LA immediately before
sampling. However, considering that blood metabolome
patterns could not predict LA during the 0–6 h immedi-
ately before sampling (Fig. 3b), this cannot be considered
a major factor in determining the blood metabolome
patterns. Thus, blood metabolome patterns may hold in-
formation about infradian states of LA oscillation during
specific time windows that are several hours or days
apart from the sampling time.
Our prediction approach highlighted potential alterations

in mitochondria metabolism concomitant with infradian
mood change-related activity. The Warburg effect is a shift
in metabolism towards aerobic glycolysis away from oxida-
tive phosphorylation even in the presence of oxygen which
is induced through mitochondrial dysfunction. It was first
described in cancer, and studies of both patients’ brains and
of mouse models have recently been suggested that it could
be involved in several psychiatric disorders [24, 33]. Alter-
ations in metabolites related to the citric acid cycle have
been found in peripheral blood and cerebrospinal fluid of
patients with bipolar disorder [11, 34]. While these studies
detected trait-related alterations and support the mitochon-
dria hypothesis of bipolar disorder [35–38], our present
study suggests that mitochondrial alterations are related to
state-related alterations, or changes in mood states. How-
ever, the causal relationship between the mitochondria-
related metabolic alterations in the blood and changes in
LA levels remains unclear. Regarding state-related alter-
ations, a recent meta-analysis indicated that blood levels of
some inflammatory cytokines, such as IL-6 and sIL-6R,
were increased in manic and euthymic states but not the
depressive state compared to controls [39]. Other study has
shown that blood levels of IL-6 and IL-2 are positively cor-
related with mood symptoms, as indicated by the Young
Mania Rating Scale [40]. These findings suggest that in-
flammatory conditions could alter depending on affective
states in bipolar disorder, with an enhanced inflammatory-
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Fig. 3 Prediction of 3 h LAs during the 3 days before sampling. a The prediction results of 6 mice are shown; the results of the remaining 29
mice are shown in Additional file 1: Figure S2. b Correlation coefficients between the actual and the predicted 3 h LAs in each time window.
Dashed lines indicate P value of 0.05 and asterisks indicate significant correlations between actual and predicted 3 h LAs after FDR correction (q
value < 0.1). Black and white bars indicate dark and light periods, respectively. c–g Scatter plots of predicted and actual 3 h LAs of each mouse at
the time windows indicated in b. LA, locomotor activity
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Fig. 4 Prediction of hippocampal gene expression from peripheral blood metabolome. a Genes processed for this prediction analysis were
provided from a previous study by Hagihara et al. [14]. The correlation coefficients between actual and predicted expression levels of each gene
are shown. Dashed lines indicatea a P-value of 0.05 and asterisks indicates significant correlations after Bonferroni correction for multiple testing
(significance level: P < 0.00714 = 0.05/7). b Scatter plot showing significant correlations between actual and predicted expression level of Arntl. The
correlation was not due to outliers. c Feature preference for constructing the prediction model of Arntl expression level. d Results of pathway
enrichment analysis for the metabolites used for constructing the prediction model of Arntl expression level. The statistical enriched terms with
raw P-value below 0.05 are shown
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related signature in manic states. Supporting these observa-
tions, we found that pyruvate, a metabolite suggested to be
an endogenous anti-inflammatory molecule [41], was nega-
tively correlated with LA in Camk2a+/− mice, and relatively
low in manic-like states (Additional file 1: Figure S1). Al-
though increased blood levels of pyruvate has implicated
mitochondrial dysfunction in bipolar disorder, its signifi-
cance on the pathogenesis of the disorder has remained un-
clear [11]. Considering the findings of the present study
and those of studies discussed above, mitochondrial
destabilization may be intricately associated with pro- and
anti-inflammatory balance in relation to changes in mood
states as well as to the pathogenesis of the disorder [42].
We found that blood metabolome patterns predicted

3 h LA at 3 days before sampling (63–66 h LA; Fig. 3b,
c), and metabolites selected for the prediction showed
enrichments in aspartate-related pathways (Additional
file 1: Figure S4). Alterations in aspartate metabolism
have been suggested in the brain and blood of patients
with bipolar disorder [11, 43]; however, their relations
with mood changes are unknown. Considering that me-
tabolites selected for the prediction of 3 h LA at 63–66 h
before sampling and the related metabolic pathways
were different from those for 24 h LA prediction (Fig. 2,
Additional file 2: Table S1), levels of a distinct set of
blood metabolites and the metabolic pathways might re-
tain information about LA during different and specific
time windows.
We also found that the peripheral blood metabolome can

predict expression levels of the Arntl gene in the hippocam-
pus, a brain region associated with mood regulation [31,
32], and that the metabolites that successfully predicted
these levels showed enrichment for mitochondria-related
pathways. These results suggest that systemic alterations in
mitochondrial metabolism and hippocampal expression of
Arntl, a candidate gene for bipolar disorder [44–46], may
serve as a link for brain–periphery interactions in relation
to mood-change-associated locomotor activity. Blood
metabolites that change according to infradian cyclic loco-
motor activity could be associated not merely with the
physical activity levels, but also potentially with hippocam-
pal function in mood regulation via concomitant expression
changes of the bipolar disorder candidate gene.
In conclusion, the present study provided evidence

that metabolome patterns in peripheral blood could be
used as predictors of states of mood-change-related ac-
tivity in this mouse model. As a limitation of this study,
a recent history of physical activity might change periph-
eral metabolome patterns independent of the mood
state, as intense or moderate exercise might affect
mitochondria-related pathways in the brain, heart, and
other organs in mice [47, 48]. Among Camk2a+/− mice,
we previously showed that levels of infradian oscillatory
LA in the home cages were associated with anxiety-like

and depression-like behaviors [14]. Although it is most
likely that the LA state in the home cage reflects a cer-
tain state of mood in Camk2a+/− mice, the effects of
physical activity independent of the mood state on blood
metabolome patterns should be considered as potential
confounding factors in this study. This study, although
limited to an animal model, may have potential for
translational applications to human studies, as peripheral
blood can be collected from living subjects in a minim-
ally invasive way. States of mood and the related behav-
iors in human, especially patients with mood disorders,
could potentially be retrospectively and prospectively
predicted with blood samples through methods analo-
gous to those used here. This may help to develop
novel biologically-based methods for the diagnosis and
treatment of bipolar disorder. To this end, further stud-
ies are needed to determine the most appropriate sam-
ples to collect (e.g., blood, saliva, urine, or skin), the
appropriate processing methods (e.g., metabolomics,
proteomics, or transcriptomics) and to optimize the
prediction algorithm [49].
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