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Abstract

Thalamic recruitment of feedforward inhibition is known to enhance the fidelity of the receptive field by limiting the
temporal window during which cortical neurons integrate excitatory inputs. Feedforward inhibition driven by the
mediodorsal nucleus of the thalamus (MD) has been previously observed, but its physiological function and regulation
remain unknown. Accumulating evidence suggests that elevated neuronal activity in the prefrontal cortex is required
for the short-term storage of information. Furthermore, the elevated neuronal activity is supported by the reciprocal
connectivity between the MD and the medial prefrontal cortex (mPFC). Therefore, detailed knowledge about the
synaptic connections during high-frequency activity is critical for understanding the mechanism of short-term memory.
In this study, we examined how feedforward inhibition of thalamofrontal connectivity is modulated by activity
frequency. We observed greater short-term synaptic depression during disynaptic inhibition than in thalamic excitatory
synapses during high-frequency activities. The strength of feedforward inhibition became weaker as the stimulation
continued, which, in turn, enhanced the range of firing jitter in a frequency-dependent manner. We postulated that
this phenomenon was primarily due to the increased failure rate of evoking action potentials in parvalbumin-
expressing inhibitory neurons. These findings suggest that the MD-mPFC pathway is dynamically regulated by an
excitatory-inhibitory balance in an activity-dependent manner. During low-frequency activities, excessive excitations are
inhibited, and firing is restricted to a limited temporal range by the strong feedforward inhibition. However, during
high-frequency activities, such as during short-term memory, the activity can be transferred in a broader temporal
range due to the decreased feedforward inhibition.
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Introduction
The activity patterns of inhibitory neurons play a critical
role in sculpting cortical network dynamics. Thalamic
excitatory inputs diverge on both excitatory and inhibi-
tory cortical neurons, generating disynaptic feedforward
inhibition. Despite the fact that thalamic efferent inputs

on parvalbumin-expressing (PV) interneurons are bifur-
cated from the same set of axons, their pre- and post-
synaptic mechanisms tend to be stronger than those on
principal neurons [1–3]. Furthermore, the connection
probability of GABAergic interneurons is remarkably
higher than that of pyramidal neurons [4–7]. Thereby,
feedforward inhibition dominates the excitatory re-
sponses and limits the temporal window for integration
of excitatory thalamic inputs (hereafter referred to as the
“integration window”) [8, 9]. It is well accepted that
feedforward inhibition sharpens the spatial and temporal
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discrimination of sensory information [2, 10, 11]. In the
medial prefrontal cortex (mPFC), the mediodorsal thal-
amic nucleus (MD) drives feedforward inhibition in the
dorsal anterior cingulate cortex (dACC) via local
parvalbumin-expressing GABAergic neurons [12].
The increased and sustained neural activity of the

mPFC has been widely believed to be the substrate of
short-term memory [13, 14]. Studies in monkeys and ro-
dents have demonstrated that functional interaction with
the reciprocally connected MD is critical for maintaining
working memory [15–17]. Specifically, interrupting this
interaction caused coincident increases in firing in the
MD, reduced reverberant activity in the prefrontal cortex
(PFC), and reduced performance during short-term
memory-dependent tasks [13, 15, 16, 18]. In many of
these experiments, recorded units in the mPFC as well
as in the MD during the delay period of the tasks exhib-
ited high-frequency firing, often over 10 Hz [17, 19, 20].
Although feedforward inhibition mediated by cortical

PV neurons has been described previously [12], the
mechanism underlying the modulation of feedforward
inhibition during high-frequency activity has never been
examined. In this study, we examined how feedforward
inhibition in MD-dACC connectivity is modulated dur-
ing high-frequency activity with whole-cell recordings
with optogenetic stimulation to better understand how
feedforward inhibition is modulated during short-term
memory.

Methods
Animals
Genetically modified mouse lines were purchased from
Jackson Laboratories and bred in-house. The PV-Cre
mouse line (B6;129P2-Pvalbtm1(cre)Arbr/J; JAX stock
#008069) was used to target PV-expressing interneurons.
The PV-Cre mouse line was bred with Ai9 mice (B6.Cg-
Gt (ROSA)26Sortm9(CAG-tdTomato)Hze/J; JAX stock
#007909) to identify PV neurons. PV interneurons of the
PV:Cre/Ai9 line express robust tdTomato fluorescence
following Cre-mediated recombination. To selectively
evoke APs in PV neurons, PV-cre mice were bred with
Ai27D mice (B6.Cg-Gt [ROSA]26Sortm27.1[CAG--

COP4*H134R/tdTomato]Hze/J; JAX stock #012567). PV neu-
rons of the PV-Cre/Ai27D line express the improved
channelrhodopsin-2/tdTomato fusion protein. The PV-
Cre, Ai27D, and Ai9 transgenic lines were bred as ho-
mozygotes. Mice were housed under a 12-h light-dark
cycle with ad libitum access to food and water. Only
male mice were used to avoid the potential effect of the
estrus cycle. All care procedures involving animals were
approved by the Institutional Animal Care and Use
Committee of the Korea Brain Research Institute (M2-
IACUC-19-00040).

Viral vectors and stereotactic surgeries
Animals were anesthetized with ketamine (100 mg/kg)
supplemented with dexmedetomidine hydrochloride
(0.4 mg/kg) by intraperitoneal injection and positioned
in a stereotaxic injection frame (Kopf instruments).
Ketoprofen (5 mg/kg) was subcutaneously injected for its
anti-inflammatory effects. During the surgery, responses
to pedal withdrawal reflex stimuli were absent. Virus in-
jection was conducted followed by a stereotaxic surgical
procedure.
An EF1a-driven, Cre-dependent, humanized channel

rhodopsin (hChR2) H134R mutant fused to enhanced
yellow fluorescent protein (eYFP) for optogenetic activa-
tion (Addgene # 20298-AAV1) and hSyn-Cre (Addgene
# 105553-AAV1) was transduced by adeno-associated
virus serotype 1 (AAV1). Between postnatal days 40–50,
the mixture (50:50) of AAV1-double floxed-H134R and
AAV1-Cre was unilaterally injected into the MD of the
PV:Cre/Ai9 mouse. To derive PV-induced inhibitory
postsynaptic currents (IPSCs) in the PFC, AAV1-double
floxed-H134R was bilaterally injected into the PV-Cre
mouse PFC. Approximately 70 nL of the virus solution
(1012 viral particles/mL) was delivered with a glass
micropipette (Drummond Scientific) through a small
skull window (1–2 mm2). To avoid leakage into sur-
rounding brain areas, we left the injection pipettes in the
brain for 6 min after the injection before slowly with-
drawing them. The injections were performed using fol-
lowing stereotaxic coordinates. The MD coordinates
from the bregma were as follows: anterior-posterior, −
1.58 mm; medial-lateral, ± 0.30 mm; dorsal-ventral, −
3.10 mm. The PFC coordinates from the bregma were as
follows: anterior-posterior, 1.75 mm; medial-lateral,
± 0.30 mm; dorsal-ventral, − 1.00 mm. During all surgical
procedures, the animals were kept on a heating pad in
an isolated cage and were brought back to their home
cages when they regained movement. For optimal viral
expression, all mice were euthanized at least 3 weeks
after the surgery.

Electrophysiology and optogenetics
Mice aged 9–10 postnatal weeks were euthanized by ex-
posure to CO2 followed by decapitation. The brains were
quickly and carefully removed in ice-cold dissection so-
lution: 25 mM sodium bicarbonate (NaHCO3), 1.25 mM
sodium monophosphate (NaH2PO4), 25 mM D-glucose,
2.5 mM KCl, 7 mM MgSO4·6H2O, 0.5 mM CaCl2, 110
mM choline chloride, 11.61 mM (+) sodium-L-ascorbate,
and 3 mM sodium pyruvate. The measured osmotic con-
centration was between 320 and 330 mOsm. Acute 300-
μm thick brain slices were prepared via coronal sections
with a vibratome (Leica VT1200S) in ice-cold dissection
solution. The composition of artificial cerebrospinal fluid
(aCSF) was as follows: 119 mM NaCl, 2.5 mM KCl, 1
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mM MgSO4·7H2O, 26mM sodium bicarbonate
(NaHCO3), 1.25mM sodium monophosphate (NaH2PO4),
20mM D-glucose, 0.4 mML-ascorbic acid, 2 mM CaCl2,
and 2mM pyruvic acid. The measured osmotic concentra-
tion was between 305 and 310mOsm. After 30min of re-
covery time in warmed aCSF (32 °C), slices were
transferred to room temperature. For each mouse, PFC
slices were prepared first, and then slices around the MD
were prepared to ensure that slices of the injection sites
were obtained. Mice were excluded from data analysis
whenever expression of the virus was observed outside of
the MD. The dACC L2/3 pyramidal neurons and PV in-
terneurons were recorded either by voltage clamping or
current clamping for the following procedures.
PV neurons were discerned visually and electrophysio-

logically by measurements of intrinsic properties. PV in-
terneurons exhibited higher firing rates with minimal
adaptation and a lower AP threshold. All recordings, in-
cluding voltage holding at − 30 mV, were performed with
patch pipettes (3.5–4MΩ) filled with an internal solu-
tion that consisted of the following components: 20 mM
KCl, 125 mMK-gluconate, 10 mM HEPES, 4 mM NaCl,
0.5 mM EGTA, 4 mM ATP, 0.3 mM Tris-GTP, and 10
mM phosphocreatine with a pH adjusted to 7.2 with
KOH. The measured osmotic concentration was be-
tween 307 and 314mOsm. Recordings were performed
at room temperature.
Optogenetic stimulation was applied with a 1-ms light

pulse from a 470-nm laser source; the light was guided
with an optic fiber placed within 1mm of the recorded
neurons. The total power of the laser measured at the tip
of the fiber by Power Meter (Thorlabs) was ~ 5mW/mm2.
We measured the resting potential of all neurons in

current-clamp mode immediately after rupture of the
neuronal membrane. Series resistance was determined
by measuring the voltage change in response to a small
hyperpolarizing current pulse (5 pA, 50 ms) at resting
potential. Spike threshold was acquired by 20-pA step
increments of current injection and determined as the
point at which the first AP was evoked. Series resistance
was observed throughout the entire experiment and was
not compensated. Cells with series resistances over 20
MΩ were excluded.
All solutions were kept saturated with 95% O2 and 5%

CO2. Acute slices were continuously perfused with aCSF
at room temperature. All data except the experiment
performed with PV-Cre/Ai27D mice were sampled at 20
kHz by the EPC-10 amplifier (HEKA Elektronik) with
Patchmaster software (HEKA Elektronik) and further an-
alyzed by MATLAB (Mathworks). Electrophysiological
data for the experiment using PV-Cre/Ai27D mice were
recorded using an Axopatch 700B amplifier (Molecular
Devices), and command pulse generation was performed
using Digidata 1550 (Molecular Devices). The data were

further analyzed using Clampfit 10.4 (Axon Instruments)
and IGOR Pro software (Wavemetrics).

Drug application
The following drugs were perfused in aCSF: 100 μM
AP5 ([2R]-amino-5-phosphonovaleric acid, an N-
methyl-D-aspartate (NMDA) receptor antagonist,
Tocris; IC50 = ~ 50 μM), 10 μM CNQX (6-cyano-7-nitro-
quinoxaline-2,3-dione, an AMPA/kainate receptor an-
tagonist, Tocris; IC50 = 1.5 μM), 2 μM bicuculline
(ionotropic γ-aminobutyric acid or GABAA receptor an-
tagonist, Sigma-Aldrich; IC50 = 2 μM), 0.5 μM TTX
(tetrodotoxin, a Na+ channel blocker, Abcam; IC50 < 10
nM), and 100 μM 4-AP (4-aminopyridine, a Kv1 channel
blocker, Tocris; IC50 = 147 μM). All drugs were perfused
throughout the experimental protocol and washed out
for at least 30 min after the end of the protocol.

Statistics
Data analysis was performed using MATLAB (Math-
works), and GraphPad Prism 6.0 (GraphPad Software).
Data are presented as the mean ± standard deviation un-
less otherwise noted. Parametric or non-parametric tests
were employed according to the normality tests. Statistical
analyses were performed using a two-tailed Student’s t-
test for the comparison of two groups. For comparisons
across more than two groups, data were analyzed using
one-way analysis of variance followed by Tukey’s post hoc
analysis to correct for multiple comparisons. For data with
a non-normal distribution, the non-parametric Mann-
Whitney or Wilcoxon signed-rank tests were used. A P
value < 0.05 was considered statistically significant.

Results
To selectively examine the thalamofrontal synapses and
recruited local inhibitory inputs, we transduced the MD
with adeno-associated virus (AAV)-channelrhodopsin-2
(ChR2) (Fig. 1). As previously described [12], optoge-
netic stimulation delivered to thalamofrontal axons
with a 470-nm laser evoked both excitatory and in-
hibitory synaptic currents on pyramidal neurons in
the dACC L2/3. We observed a large depolarizing in-
ward current near the reversal potential of chloride
(Fig. 1a). When the membrane voltage (Vm) was
clamped near 0 mV, we observed a hyperpolarizing
outward current that was sensitive to the GABAA re-
ceptor antagonist bicuculline (2 μM), suggesting that
the current was an inhibitory synaptic current, i.e., an
IPSC (Fig. 1a). The IPSCs were also completely
blocked by the AMPA/kainate receptor antagonist 6-
cyano-7-nitroquinoxaline (CNQX, 10 μM), indicating
that the observed IPSCs were not directly from the
MD but from local inhibitory neurons excited by the
MD [12]. To further confirm that the IPSCs were
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current from disynaptically connected interneurons,
we compared the onset latency of IPSCs with that of
excitatory postsynaptic currents (EPSCs) (Fig. 1a,
right). As expected, the onset of the IPSCs appeared
significantly delayed (EPSCs, 7.06 ± 0.62 ms; IPSCs,
10.58 ± 0.96 ms; 17 cells, P = 0.0008, paired t-test; Fig.
1b). The observed delay was 3.52 ± 0.86 ms and cor-
roborated well with the synaptic delays described in
previous studies [12, 21]. We concluded that feed-
forward inhibition was driven by activation of MD
axons in the dACC.
We then examined how the temporal window of exci-

tation is modulated by high-frequency MD activity. The

neurons were voltage-clamped at − 30 mV, and a series
of optogenetic stimulus-evoked biphasic inward and out-
ward currents were observed (Fig. 1c). We defined the
integration window as the temporal duration of the net
inward current in this condition (Fig. 1d) [2, 22]. The
measured integration window upon a low-frequency
stimulus was approximately 6.02 ± 0.88 ms (mean ±
range). Upon high-frequency (5 Hz or 10 Hz) MD activ-
ity, the width of the integration window increased sig-
nificantly (Fig. 1f−g). The normalized length of the
integration window gradually increased as the stimula-
tion continued (Fig. 1f−g). The length of the integration
window upon the fifth stimulus was approximately five-

Fig. 1 The thalamofrontal integration window increases at high frequency. a Representative traces of the synaptic current. An inhibitory
postsynaptic current (IPSC) measured at 0 mV (outward black trace) and an IPSC in the presence of a GABAA receptor antagonist (2 μM
bicuculline, green trace). An EPSC measured at − 70 mV (inward black trace) and an EPSC in the presence of 10 μM 6-cyano-7-nitroquinoxaline
(CNQX; orange trace). An NMDA channel-dependent current was ruled out by 100 μM (2R)-amino-5-phosphonopentanoate (APV) throughout the
experiment. Magnified EPSC and IPSC traces around the onset of the synaptic currents (inset). The inflection points of the EPSC and IPSC were
defined as the onsets and used to calculate the onset latencies. b The onset latency of the thalamofrontal IPSC on pyramidal cells was
longer than that of the EPSC (17 cells, ***p = 0.0008, paired t-test, parametric). c Example trace of the EPSC/IPSC complex sequence at
− 30 mV with 5 Hz optogenetic thalamofrontal stimulation. d An example trace showing how the integration window was measured,
namely, as the duration of the net inward current in EPSC-IPSC sequences. e An EPSC-IPSC sequence with and without 2 μM bicuculline
(Vhold = − 30 mV, red). f−g The normalized length of the integration window at 5 Hz (f) (9 cells, *Pstim2 = 0.023, **Pstim3 = 0.0039,
*Pstim4 = 0.012, **Pstim5 = 0.0078, paired t-test, non-parametric) and 10 Hz (g) (9 cells, *Pstim2 = 0.016, **Pstim3 = 0.0078, **Pstim4 = 0.0039,
**Pstim5 = 0.0078, paired t-test, non-parametric)
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fold wider than that of the first window (5 Hz: 6.45 ±
1.37 ms vs. 30.01 ± 13.14 ms, 9 cells; 10 Hz: 5.58 ± 1.18
ms vs. 21.33 ± 8.43ms, 9 cells, mean ± range).
Weakened feedforward inhibition during high fre-

quency predicts greater temporal variability of action po-
tential (AP) generation. We measured AP jitter between
the stimulus and AP peaks with whole-cell voltage re-
cordings and optogenetic stimulation of MD axons
(Fig. 2). As expected by the strong depression of thala-
mofrontal excitatory inputs, we observed a strongly re-
duced firing rate and delayed AP generation as high-
frequency stimuli proceeded. Furthermore, we observed
greater AP jitter during high-frequency activity of MD

axons. The firing ranges of the frequencies were initially
22.48 ± 16.42 ms at 0.1 Hz, 17.59 ± 18.47 ms at 5 Hz, and
15.92 ± 8.30 ms at 10 Hz each. After five consecutive
stimulations, the ranges became much broader with
high-frequency activity (13.96 ± 6.02 ms at 0.1 Hz,
33.66 ± 16.81 ms at 5 Hz, and 37.56 ± 23.38 ms at 10 Hz).
These results demonstrate that feedforward inhibition,

and thereby the integration window of dACC neurons,
are dynamically regulated in a frequency-dependent
manner. Next, we examined the circuit mechanisms by
which the integration window was selectively widened in
the presence of high-frequency MD activity. Lengthening
of the integration window can occur by the facilitation

Fig. 2 The dorsal anterior cingulate cortex L2/3 pyramidal spike output jitters along with high-frequency stimulation. a−c Superimposed traces of
voltage changes due to thalamofrontal optogenetic stimulation at a 0.1 Hz (9 cells), b 5 Hz (53 cells), and c 10 Hz (48 cells). Light stimulations (1
ms) are shown as a blue vertical line. d The time-to-peak of optogenetically evoked action potentials after the first and fifth stimulations at the
indicated frequencies. The stimulation points are shown as a blue horizontal line
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of EPSCs [23] and/or depression of IPSCs [2]. The first
possibility is unlikely because MD-to-mPFC synapses,
similar to other thalamocortical synapses, have been
shown to have a high probability of neurotransmitter re-
lease and tend to be depressed by high-frequency stimu-
lation [24]. Therefore, we focused on the possibility of
reduced feedforward inhibition [2, 8]. To test this idea,
we compared the changes in thalamofrontal EPSCs and
feedforward IPSCs during high-frequency activity (Fig. 3).
As previously shown, MD-dACC synapses were de-
pressed strongly during high-frequency activity [24].
However, the indirect inputs via cortical inhibitory neu-
rons showed a remarkably faster short-term depression
[25] (Fig. 3b−c). The amplitudes of IPSCs depressed to
0.10 ± 0.04 and 0.10 ± 0.02 of the first amplitude by five
consecutive stimuli at 5 and 10 Hz, respectively (5 cells),
whereas the amplitudes of EPSCs decreased to 0.37 ±
0.10 and 0.37 ± 0.10 of the initial current by five con-
secutive stimuli at 5 and 10 Hz, respectively (7 cells).

The reduced feedforward IPSCs accompanied by wid-
ened integration windows can be explained by the failure
or delayed onset of APs in the inhibitory neurons. In
other words, the strong short-term depression of the
MD-driven synaptic current during tetanic stimulation
could lengthen the time needed or even fail to evoke
APs in the cortical inhibitory neurons. We first exam-
ined this possibility by comparing the onset of EPSCs
and IPSCs during a series of stimulations (Fig. 3d−e).
Supporting the idea of delayed AP onsets, we found that
the temporal differences between the onsets of the
EPSCs and the feedforward IPSCs were more pro-
nounced with consecutive stimulations.
We tested two possibilities to determine the stronger

depression of disynaptic feedforward IPSCs. We first ex-
amined the short-term plasticity of PV-pyramidal synap-
ses. To selectively evoke APs in cortical PV neurons, we
expressed channelrhodopsin-2 on PV neurons either by
introducing AAV-double floxed-ChR2-EYFP (Addgene

Fig. 3 Feedforward inhibitory postsynaptic currents (IPSCs) depress faster than excitatory postsynaptic currents (EPSCs). a Sample traces of an
EPSC and IPSC in dorsal anterior cingulate cortex (dACC) L2/3 pyramidal neurons. b−c Normalized amplitudes of an EPSC and IPSC at 5 Hz (b)
and 10 Hz (c) (7 and 5 cells were recorded for the EPSC and IPSC, respectively; 5 Hz Pstim2 = 0.35, Pstim3 = 0.28, Pstim4 = 0.073, *Pstim5 = 0.047,
unpaired t-test, parametric; 10 Hz Pstim2 = 0.17, Pstim3 = 0.10, *Pstim4 = 0.050, *Pstim5 = 0.032, unpaired t-test, parametric). d−e Onset latencies of EPSC
and IPSC after consecutive stimulations at d 5 Hz and e 10 Hz (17 and 8 cells were recorded for the EPSC and IPSC, respectively; EPSC 5 Hz,
Pstim2 = 0.080, *Pstim3 = 0.013, ****Pstim4 < 0.0001, **Pstim5 = 0.0011, unpaired t-test, parametric; EPSC 10 Hz, *Pstim2 = 0.40, ***Pstim3 = 0.0008,
**Pstim4 = 0.0038, **Pstim5 = 0.0082, unpaired t-test, parametric; IPSC 5 Hz, ***Pstim2 = 0.0007, ***Pstim3 = 0.0002, ****Pstim4 < 0.0001, ***Pstim5 = 0.0007,
unpaired t-test, parametric; IPSC 10 Hz, *Pstim2 = 0.015, ****Pstim3 < 0.0001, ****Pstim4 < 0.0001, ***Pstim5 = 0.0001, unpaired t-test, parametric; P value
between EPSC and IPSC groups, 5 Hz, #Pstim2 = 0.013, #Pstim3 = 0.017, Pstim4 = 0.13, #Pstim5 = 0.020, unpaired t-test, parametric; P value between
EPSC and IPSC groups, 10 Hz, Pstim2 = 0.26, ##Pstim3 = 0.0038, Pstim4 = 0.069, ##Pstim5 = 0.0044, unpaired t-test, parametric)
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#20298) to PV-Cre mice, or by using PV-ChR2 mice that
express hChR2 in PV neurons. Upon 5 Hz tetanic stimu-
lation of PV-pyramidal synapses, synaptic depression of
IPSCs of MD-pyramidal synapses was indistinguishable
from feedforward inhibition derived from MD stimula-
tion on pyramidal neurons in PV-ChR2 mice (8 cells,
0.22 ± 0.04 of the initial plateau amplitude by the fifth
response during 5 Hz stimulation; Fig. 4a−c). Further-
more, short-term depression of IPSCs from PV neurons-
to-pyramidal neurons was not greater than that of the
thalamofrontal EPSCs (Supplementary Fig. 1A). This re-
sult indicates that the short-term synaptic plasticity of
PV-pyramidal synapses alone cannot account for the
extraordinarily fast synaptic depression of feedforward
inhibition.
Previous studies have shown that PV neurons receive

greater and more frequent responses from thalamic in-
puts [1–3] and mediate feedforward inhibition [12, 26].

Therefore, it is probable that MD inputs on PV synapses
depress too fast to evoke reliable APs in PV neurons
during tetanic stimulation. To test this, we identified
and recorded voltage changes specifically from PV neu-
rons during the high-frequency activity of MD synapses
in the PV-TdTomato mouse line. In response to high-
frequency optogenetic stimulation, the probability of
successful AP generation by activation of MD axons
dropped dramatically (Fig. 4d-h). However, the short-
term plasticity of thalamofrontal EPSCs in PV neurons
were not significantly greater than that in pyramidal
neurons (Fig. 4g). Of note, although it was not statisti-
cally significant, the reduction in the spike probability of
PV neurons tended to decay faster than the synaptic in-
put; subsequently, no AP was generated by the fifth
stimulus (Fig. 4g, h and Supplementary Fig. 1B). We at-
tributed the dramatic reduction of AP generation to a
relatively high rheobase of PV neurons in the cortices

Fig. 4 Short-term plasticity of PV-IPSCs and thalamofrontal EPSCs in PV neurons in the dACC L2/3. a Schematic image of the experiment.
Inhibitory postsynaptic currents (IPSCs) derived from local parvalbumin-expressing (PV) activity were measured in pyramidal neurons in the dorsal
anterior cingulate cortex (dACC). b An example trace of a PV-derived IPSC in the presence of (2R)-amino-5-phosphonopentanoate (APV) and 6-
cyano-7-nitroquinoxaline (CNQX; green) after bicuculline (gray) (Vhold = − 70 mV). Light stimulations (1 ms) are shown as a blue vertical line. c PV-
IPSCs were depressed similarly to the feedforward disynaptic IPSCs evoked by mediodorsal nucleus of the thalamus stimulation at 5 Hz (8 cells,
Pstim2 = 0.16, Pstim3 = 0.18, Pstim4 = 0.07, Pstim5 = 0.06, unpaired t-test, parametric). Standard deviation is depicted as the shaded area. d Schematic
image of a thalamofrontal EPSC in PV neurons. e−f Each single action potential time-to-peak in PV and pyramidal neurons at 5 Hz (e) and 10 Hz
(f) is shown as a horizontal bar (9 trials). g Normalized thalamofrontal EPSC amplitude on PV compared with that on pyramidal neurons at 5 Hz (4
PV cells, 6 Pyr cells, Pstim2 = 0.72, Pstim3 = 0.69, Pstim4 = 0.94, Pstim5 = 0.79, unpaired t-test, non-parametric, thalamofrontal EPSCs in pyramidal
neurons are in the same data set as that used for Fig. 3b and c). Standard deviation is depicted as the shaded area. h Spike probability of PV
neurons at 5 Hz and 10 Hz (7 cells, Pstim2 = 0.13, Pstim3 = 0.5, Pstim4 > 0.9, Pstim5 = 1.0, unpaired t-test, non-parametric)
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[27, 28]. The observed failure in AP generation was not
due to ChR2 inactivation, as optogenetic 10 Hz stimula-
tion evoked immediate and reliable APs in ChR2-
expressing MD neurons in our experimental condition
(data not shown). Therefore, we concluded that, during
the high-frequency activity of the MD, thalamofrontal
synapses depress rapidly enough to fail in recruiting
feedforward inhibition.

Discussion
The current findings indicate that feedforward inhibition
decreases during high-frequency stimulation, and
thereby, the integration of excitation can be dynamically
regulated during high-frequency MD activity, such as
during short-term memory. During high-frequency ac-
tivity, we observed frequent failure in excitation transfer
from MD to PV neurons in the dACC and, in turn, rap-
idly decreased feedforward inhibition.
The temporal window of integration was widened ac-

cordingly, which increased the probability of thalamo-
frontal excitatory inputs being integrated. Frequency-
dependent gating of the feedforward inhibition, and thus
regulation of the integration window, has been well
established in primary sensory cortices in vitro and
in vivo [1, 2, 29, 30]. However, physiological conse-
quences of the broadened integration window could be
drastically different. Considering that thalamofrontal ex-
citatory synapses undergo rapid depression during high-
frequency MD activity [24], frequency-dependent
switching off of feedforward inhibition can be critical for
continuous transfer of MD activity toward the PFC. In
other words, during the maintenance of short-term
memory, in which high-frequency MD activity must be
transferred to the PFC [16], widening of the integration
window can be critical for maintaining the activity loop
between the MD and PFC.
Many uncertainties remain concerning the role of

feedforward inhibition in the function of the PFC. In the
sensory cortices, intra-cortical inhibitory synaptic trans-
mission plays an important role in the construction of
response selectivity. Upon inhibition, a significant reduc-
tion in the selectivity of neuronal responses to sensory
stimuli such as orientation-selectivity and direction-
selectivity has been reported [31–37]. Projection from
MD drives disynaptic feedforward inhibition in the PFC
as well [12], and blocking the feedforward inhibition
leads to a significant alteration of the spatial selectivity
of the neurons during working memory tasks [38]. How-
ever, in a considerable minority of PFC neurons, ionto-
phoretically applied bicuculline unmasked new spatial
tunings [38]. This result suggests that GABAergic trans-
mission plays critical roles not only in the construction
but also in switching of the response selectivity of PFC
neurons. Although additional studies are required to test

the impact of reduced feedforward inhibition on the
spatial tuning of the PFC neurons, on/off switching of
the response selectivity could occur during high-
frequency MD-PFC activity, as seen in short-term mem-
ory. If this is the case, it is tempting to hypothesize that
the switching of response selectivity by reduced feed-
forward inhibition might force different populations of
neurons to activate at different time intervals during
short-term memory tasks [39].
Fine regulation of the MD-mPFC connection strength

is critical for normal function of the PFC. A subtle de-
crease in MD inputs reduced the functional synchrony
of the MD and mPFC as well as cognitive functions [17,
40], and lesions of the MD recapitulated the cognitive
impairments caused by PFC dysfunction, including loss
of short-term memory [41, 42]. Altered functional con-
nectivity between the MD and PFC has been reported in
patients with short-term memory deficits [43, 44]. Fur-
thermore, in patients with schizophrenia, decreased vol-
ume [45], number of neurons [46], and activity during
short-term memory tasks have been observed in the MD
[47]. Deteriorating alteration of feedforward inhibition in
the PFC as a possible etiology of schizophrenia would be
an interesting subject for future studies. Supporting this
possibility, deficient output from PV neurons has been
proposed [48] based on the decreased density of
GABAergic neurons [49] without a decrease in the num-
ber of total neurons in cases of schizophrenia [50]. Al-
tered transcriptional regulation of GABAA receptor
subtypes [51] and decreased expression of glutamate de-
carboxylase, which plays a role in the synthesis of GABA
[52], in schizophrenic patients also support the possible
engagement of feedforward inhibition.
Additional studies that directly measure the strength

of feedforward inhibition during short-term memory
tasks are required to examine the physiological signifi-
cance of feedforward inhibition in the thalamofrontal
circuit. In fact, the pattern of short-term depression on
PV neurons can be assumed to be more moderate
in vivo primarily due to ongoing neuronal activity and
lower calcium concentration [53, 54]. The ongoing activ-
ity in vivo results in partially depressed synapses to begin
with, and thus the short-term depression will be less
pronounced compared to the initial amplitude [55, 56].
Moreover, the spontaneous network activity enhances
the replenishment of the readily releasable pool of syn-
aptic vesicles [57]. However, the reduced short-term de-
pression due to ongoing activity is only a relative
measure, and does not delay the depletion of a readily
releasable pool. The MD-PV synapses in the mPFC have
been demonstrated to be strongly depressed even in the
presence of low calcium concentrations [24]. Further-
more, failure in excitation transfer occurred at as low as
5 Hz, which is a relatively low activity frequency
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compared to the firing rate observed in MD during the
maintenance of short-term memory [17, 19, 20].
In summary, our study suggests that frequency-

dependent on/off switching of feedforward inhibition
serves as an active gating mechanism of the activity loop
between the MD and mPFC, and thus finely controls the
maintenance of short-term memory.
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non-parametric, P > 0.05).
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