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Abstract

Aim: To expand our current understanding of the genetic basis of subarachnoid hemorrhage (SAH), and reveal the
susceptibility genes in SAH risk.

Methods: We conducted whole-exome sequencing (WES) in a cohort of 196 individuals, including 94 SAH patients
and 94 controls, as well as 8 samples that belong to two pedigrees. Systematically examination for rare variations
(through direct genotyping) and common variations (through genotyping and imputation) for SAHs were
performed in this study.

Results: A total of 16,029 single-nucleotide polymorphisms (SNPs) and 108,999 short indels were detected in all
samples, and among them, 30 SNPs distributed on 17 genes presented a strong association signal with SAH. Two
novel pathogenic gene variants were identified as associated risk loci, including mutation in TPO and PALD1. The
statistical analysis for rare, damaging variations in SAHs identified several susceptibility genes which were involved
in degradation of the extracellular matrix and transcription factor signal pathways. And 25 putative pathogenic
genes for SAH were also identified basic on functional interaction network analysis with the published SAH-
associated genes. Additionally, pedigree analysis revealed autosomal dominant inheritance of pathogenic genes.

Conclusion: Systematical analysis revealed a key role for rare variations in SAH risk and discovered SNPs in new
complex loci. Our study expanded the list of candidate genes associated with SAH risk, and will facilitate the
investigation of disease-related mechanisms and potential clinical therapies.

Keywords: Subarachnoid hemorrhage (SAH), Whole-exome sequencing (WES), Genome-wide association analysis
(GWAS), Rare variations, Pedigree analysis

Introduction
Subarachnoid hemorrhage (SAH), the rarest but most
fatal type of stroke, has shown an annual incidence of
8–10/100,000 persons (2007), 30-day case fatality of
35–45% in western countries [17, 20]. In China, annual
incidence (per 100,000 persons) of SAH was 6.2, which
is slightly lower than in western countries [40]. The
majority of patients with SAH usually suffered from

ruptured intracranial aneurysm (IA). SAH risk was con-
sidered to be related to smoking, hypertension, and
poor socioeconomic status [2, 14]. Moreover, studies
based on molecular mechanisms have shown that gen-
etic factors also play an important role in the forma-
tion, growth and rupture of IA [6, 11, 24, 32, 38].
Therefore, IA is identified as a complex disease that in-
fluenced by various genes and environmental factors.
Conducting early detection and intervention by identi-
fying risk factors may facilitate to avoid the formation
and rupture of IA, and is crucial for the reduced
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incidence of SAH [12]. However, comprehensive know-
ledge of pathogenic and ruptured mechanisms of IA
has not yet been defined.
Some studies have focused on the pathogenic mecha-

nisms of IA in China, and several susceptibility genes
have been identified. Due to the limitation of technology
and small sample size, it is still necessary to further
study the genetic factors of IA in China. Although
genome-wide association analysis (GWAS) studies have
found some novel gene loci related to IAs, they can only
explain part of the genetic risk. Most of the GWAS stud-
ies have focused on both unruptured and ruptured IAs,
thus, the gene loci highly related to ruptured IAs have
not been completely detected. Moreover, rare, damaging
variants also play an important role in complex diseases.
With advances in sequencing technology, genetic ana-
lysis is gradually extending to rare variants, which often
have more obvious functional consequences of harmful
phenotypes [13, 29].
In this study, we set out to systematically examine

rare variation (through direct genotyping) and com-
mon variation (through genotyping and imputation)
for SAHs by whole-exome sequencing (WES) in a co-
hort of 196 samples. Mendelian inheritance analysis
for the SAH pedigrees was also performed to identi-
fied the susceptibility genes. Our study constitutes a
detailed simultaneous assessment of causal variations
in a large sample of SAHs, offer an opportunity to
better understand both the biological and genetic
architecture of this type of complex disease.

Materials and methods
Study cohorts
We prospectively collected 196 samples, including 8
samples that belong to two pedigrees from Central Hos-
pital of Baotou. The cohorts included 94 SAH cases(with
ruptured intracranial aneurysm confirmed by Digital
Subtraction Angiography, DSA and computed tomog-
raphy, CT) and 94 controls(for each case, 1 control with-
out SAH will be sort for interview. Controls will be
matched on the basis of the following criteria:

� gender (sex)
� 10-year age strata (ie 10–19, 20–29, etc)
� sector of suburb of residence in Baotou (North,

East, etc).

Controls will be chosen from the spouse, relative or
friend of patients without SAH who are currently in the
same hospital as the case.). This study was approved by
the Human Research Ethics Committee of Central Hos-
pital of Baotou, and all participants provided written in-
formed consent. Comprehensive clinical information

was provided in Table S1, including height, weight, BMI,
gender and age etc.

Whole-exome sequencing
Genomic DNA was isolated from peripheral whole blood
samples of participants by using Genomic DNA Extrac-
tion Kit (Invitrogen, South San Francisco, CA, USA).
The Qubit 3.0 fluorometer and gel electrophoresis were
used to evaluate DNA quantity and integrity, respect-
ively. The sequencing paired-end libraries were con-
structed for each sample and captured using SureSelect
Human All Exon V6 kit (Agilent Technologies, Santa
Clara, CA, USA) following the manufacturer’s instruc-
tions. All libraries were sequenced on BGI-SEQ 500
platform at BGI to obtain a desired depth of ~100X. The
sequencing depths of each sample are listed in Table S2.

Whole-exome sequencing (WES) data processing and
variant calling
To get high quality data, Trimmomatic [5] was used to
filter out low-quality reads which contained adaptors,
high base error rate (> 50%), and highly unknown base
proportion (> 10%) from the raw sequencing data. The
cleaned reads were aligned to human reference genome
(UCSC hg19) by the Burrows-Wheeler Aligner-MEM
(v.0.7.15) [26] with default parameters. All the aligned
reads were further processed using Picard tools (v2.5.0)
and Genome Analysis Toolkit (GATK, v3.7) [28] with
default parameters, which included deduplication, base
quality recalibration, and multiple-sequence realignment
prior to mutation detection.
Variant calling was performed for all the samples by

using the Haplotype Caller algorithm in GATK with the
parameters “-stand_call_conf 30 -stand_emit_conf 10
-minPruning 3”. Each variant was filtered using GATK
hard filters with the parameters “QD<2.0 || FS>60 ||
MQ<40 || MQRankSum<-12.5 || ReadPosRankSum<-
8.0” for SNPs and “QD < 2.0 || FS > 200 || ReadPos-
RankSum < -20” for Indels to reduce the false positive
rate. We then called genotypes jointly across all samples
at the remaining sites, followed by genotype refinement
using the BEAGLE imputation software (v5.0) [7]. The
variants were subsequently annotated by multiple data-
bases using the ANNOVAR tool [37].

Sample quality control
The standard quality screening conducted independ-
ently in each sample included SNP and sample call
rates (> 90%), Hardy–Weinberg equilibrium, Mendel-
ian errors, gender inconsistencies and checks for
population stratification. To obtain a high-quality set
of samples, the outlier samples discovered using
principal-component analysis in GCTA [39] were re-
moved from further analysis.

Hao et al. Molecular Brain           (2020) 13:82 Page 2 of 12



Association testing
The single marker association analyses with SAH were
performed using an additive genetic model implemented
in SNPTEST (http://www.stats.ox.ac.uk/~marchini/soft-
ware/gwas/snptest.html) for the common SNPs (MAF >
10%). Age, sex, BMI, smoking, drinking, body fat, and
diabetes were used as covariates in the analysis.

Rare SNP filtering
We used different allele frequency threshold in several
public population databases: 1000G (http://browser.1
000genomes.org/index.html), ExAC, ESP etc., to filter
out common variants. Then, only variants with fre-
quency less than the thresholds in all these databases
were considered as the rare SNPs of SAHs.

Functional impact prediction
Each variant category has to be assessed with a specific
set of tools to predict their functional impact. Here, we
assumed that synonymous variants have no functional
impact, and all the stop gain and stop loss variants were
considered as the deleterious mutations. The functional
predictions of missense variants were performed by
seven computational methods (SIFT (Ng, 2001 #4097),
Polyphen2 [1], MutationTaster [33], CADD [27], REVEL
[21], M-CAP [22], LRT [10]). The pathogenicity of mis-
sense mutations was assumed if predicted pathogenic by
at least five out of the computational methods. The dpsi
score were employed to determine the pathogenicity of
splicing mutations.

Gene-based burden analysis
Gene-base test were performed for the rare, damaging
variants. For each gene, we computed the burden of rare,
damaging variants in SAH cases and controls, respect-
ively. Fisher’s exact test was applied to determine the
significantly associated genes in SAHs. Those genes with
a P-value of less than 0.05 were identified as susceptibil-
ity genes in SAHs. SKAT-O [25] was also applied for
burden test, which allowing for variants with opposite
directions of effect to reside in the same gene.

Inheritance analysis in pedigrees
The SNPs were called from the 2 pedigrees, and were
further filtered as the filtering criterion of rare SNPs.
Then, all the SNPs were subjected to functional impact
prediction. Mendelian inheritance analysis was per-
formed for the diseasing causing SNPs with 4 inherit-
ance patterns, including (1) dominant inheritance
pattern; (2) recessive inheritance pattern; (3) semi-
dominant inheritance pattern; (4) compound heterozy-
gote inheritance pattern.

The network analysis
The SAH-associated genes were collected from the pub-
lished studies. The STRING database and associated
search tools [35] were used for identifying interacting
partners of a list of SAH-associated genes. We employed
the identified interacting partners as the candidate
pathogenic genes in SAHs.

Results
Cohorts description and whole-exome sequencing
In this study, we performed ~100x whole-exome se-
quencing (WES) for 94 SAH cases, 94 controls, and 2
pedigrees. Comprehensive description of the height,
weight, sex, age and the other clinical variables of the
cohort are provided in Table S1. In brief, the SAH group
included 55 hypertension, 10 diabetic, 11 hyperlipidemia,
46 smoker/former-smoker, and 22 drinker/former-
drinker. The control group included 37 hypertension, 9
diabetic, 9 hyperlipidemia, 42 smoker/former-smoker,
and 23 drinker/former-drinker. The statistics of the
WES data was provided in Table S2 and S3, including
effective bases, SNPs numbers, Indel numbers and Ti/Tv
rate etc. for each sample.
We totally discovered 716,029 single-nucleotide poly-

morphisms (SNPs) and 108,999 short indels in all the
samples. We then applied Genome Analysis Toolkit
(GATK) VQSR for SNVs to distinguish true sites of gen-
etic variation from sequencing artifacts. Then, 549,553
SNPs were remained, including 148,967 exonic SNPs,
for the further analysis (See Method section, Table S4).
Following sample quality control, the whole-exome se-
quences of 93 patients with SAH and 92 controls were
jointly analyzed (See Method section).

Imputation into GWAS
For imputation purposes, we conducted a genome-wide
single-variant analysis of the common SNPs (minor al-
lele frequency, MAF > 0.1) comparing the 93 SAH cases
and 92 controls. The associations with SAH risk were
tested using logistic regression adjusted for sex, BMI,
smoking, drinking, body fat, and diabetes as covariates.
The genomic inflation factor (λ = 1.006) showed no evi-
dence of inflated test statistics. There were 30 SNPs dis-
tributed on 17 genes presented a strong association
signal with SAH (Table 1, Fig. 1). In these SNPs, three of
them were in exon, and one in UTR3, and the other in
intron. We obtained two loci reached genome-wide sig-
nificance, within the introns of two genes TPO and
PALD1, respectively (Fig. 2), implies a putative func-
tional role in the pathogenesis of SAHs.
TPO encodes a membrane-bound glycoprotein that

plays a major role in thyroid gland function. Mutations
in this gene are associated with several disorders of thy-
roid hormonogenesis, i.e., congenital hypothyroidism,
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and congenital goiter [31, 34]. As depicted in Fig. 2, an-
other SNP within Phosphatase Domain Containing Pala-
din 1 (PALD1) also showed a significant signal. PALD1
is thought to be involved in the formation of vascular
endothelium [36].

The role of rare variations in SAH risk
It is plausible that analysis of rare variants could explain
additional disease risk or trait variability. We next investi-
gated the rare variants across the cohorts by applying the
frequency filtering (see Method section). The variants
were defined as rare if their frequency in various databases
were less than the corresponding threshold (Table S5).
Each rare variant was assessed with a specific set of tools
to predict their functional impact (see Method section).

The 30,651 potential damaging rare variants remained for
further analysis.
We employed two gene-based methods to identify the

susceptibility genes in SAHs. Rare variants burden testing
was performed between SAH cases and control samples
by Fisher’s exact test, and 38 susceptibility genes, such as
gene OBSCN, TJP1, ADGRV1, and FBN3 etc., were ob-
tained (Table 2). However, when variants with opposite di-
rections of effect in the same gene, the testing power will
be reduced. We then employed another analysis with
SKAT-O [25] to identify the signals, which both allowed
for variants with opposite directions of effect to reside in
the same gene. The SKAT-O identified 37 signals
(Table 3), which were highly overlap with the results from
the burden test (92.3%, Fig. 3), which suggested that these
genes could be directly involved in ALS risk.

Table 1 SNPs with the strongest association with SAH from the GWAS results

Chr Pos Ref Alt Cases MAF Controls MAF OR P value Function Gene

10 72,300,743 G C 0.087 0.274 3.97 6.94E-07 intronic PALD1

2 1,437,410 C T 0.245 0.484 2.90 1.16E-06 intronic TPO

2 31,189,236 A G 0.212 0.425 2.75 2.37E-06 intronic GALNT14

2 31,189,304 C T 0.212 0.425 2.75 2.37E-06 intronic GALNT14

2 31,189,345 T G 0.212 0.425 2.75 2.37E-06 intronic GALNT14

2 31,189,401 G A 0.212 0.425 2.75 2.37E-06 intronic GALNT14

2 31,189,439 A G 0.212 0.425 2.75 2.37E-06 intronic GALNT14

10 72,306,967 T C 0.174 0.366 2.74 3.33E-06 intronic PALD1

10 72,306,978 A C 0.174 0.366 2.74 3.33E-06 intronic PALD1

2 1,437,163 C A 0.168 0.376 2.98 6.23E-06 intronic TPO

19 50,189,818 C G 0.098 0.016 0.15 1.09E-05 intronic PRMT1

20 3,846,843 T C 0.348 0.172 0.39 1.34E-05 UTR3 MAVS

10 72,289,778 T C 0.109 0.269 3.01 1.82E-05 exonic PALD1

19 50,195,455 A G 0.092 0.016 0.16 2.38E-05 intronic CPT1C

4 1.85E+ 08 A G 0.147 0.032 0.19 2.65E-05 intronic TRAPPC11

7 28,449,965 C T 0.033 0.140 4.82 2.73E-05 intronic CREB5

2 1,442,417 T C 0.163 0.355 2.82 2.80E-05 intronic TPO

2 1,442,476 C T 0.163 0.355 2.82 2.80E-05 intronic TPO

5 58,334,645 G A 0.054 0.199 4.32 3.43E-05 intronic PDE4D

10 72,307,101 C T 0.603 0.398 2.30 3.58E-05 exonic PALD1

14 35,062,166 T C 0.114 0.263 2.78 4.50E-05 intronic SNX6

7 1.51E+ 08 G C 0.315 0.516 2.32 4.78E-05 intronic NUB1

18 14,796,080 A G 0.234 0.382 2.02 5.39E-05 intronic ANKRD30B

2 1,426,621 A G 0.332 0.532 2.29 6.31E-05 intronic TPO

9 1.02E+ 08 T C 0.196 0.065 0.28 6.60E-05 intronic GALNT12

15 23,049,369 A G 0.337 0.177 0.42 8.36E-05 intronic NIPA1

5 75,427,935 A G 0.272 0.452 2.21 9.09E-05 exonic SV2C

10 72,288,900 G A 0.397 0.591 2.20 0.000103 intronic PALD1

10 50,683,438 C T 0.277 0.118 0.35 0.000104 intronic ERCC6

6 70,970,299 T C 0.223 0.091 0.35 0.000106 intronic COL9A1
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Fig. 1 Quantile–quantile (Q–Q) plots of the meta-analyses of genome-wide association studies (GWAS) results for SAH

Fig. 2 Manhattan plot depicting the GWAS results for SAH. Each dot represents a single-nucleotide polymorphism (SNP), with the chromosomal
position on the x axis and the P-value on the y axis
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The overlapped genes were further subjected to
functional enrichment analysis. These genes were
overrepresented in some pathways related to
cellular organization, i.e., adherens junction, and
degradation of the extracellular matrix; and tran-
scription factor signal, i.e., TGF-beta signal pathway
(Table 4).

Pedigree analysis
We performed Mendelian inheritance analysis for two
SAH pedigrees with probable inheritance patterns, in-
cluding (1) dominant inheritance pattern; (2) recessive
inheritance pattern; (3) semi-dominant inheritance pat-
tern; (4) compound heterozygote inheritance pattern.
Pathogenicity of missense mutations was assumed if

Table 2 Candidate genes in SAH identified by burden test of rare variants

Gene Number of Cases
with mutations

Number of Controls
with mutations

Number of Cases
without mutations

Number of Controls
without mutations

P value OR

OBSCN 26 11 68 82 0.005 2.834

ABCG8 7 0 87 93 0.007 Inf

PIGG 7 0 87 93 0.007 Inf

GOLGA2 6 0 88 93 0.015 Inf

MTMR4 6 0 88 93 0.015 Inf

MYH1 6 0 88 93 0.015 Inf

OTOGL 6 0 88 93 0.015 Inf

TCF3 6 0 88 93 0.015 Inf

TJP1 10 2 84 91 0.017 5.374

KMT2C 8 1 86 92 0.018 8.482

ADGRV1 16 6 78 87 0.021 2.958

FBN3 9 2 85 91 0.030 4.782

ABCG5 5 0 89 93 0.030 Inf

BCL9 5 0 89 93 0.030 Inf

C1orf94 5 0 89 93 0.030 Inf

CEBPZ 5 0 89 93 0.030 Inf

COG3 5 0 89 93 0.030 Inf

CTC1 5 0 89 93 0.030 Inf

FDXR 5 0 89 93 0.030 Inf

GRIK3 5 0 89 93 0.030 Inf

INCENP 5 0 89 93 0.030 Inf

IQGAP3 5 0 89 93 0.030 Inf

KNDC1 5 0 89 93 0.030 Inf

LETMD1 5 0 89 93 0.030 Inf

METTL22 5 0 89 93 0.030 Inf

NCOA6 5 0 89 93 0.030 Inf

PDZD7 5 0 89 93 0.030 Inf

PIF1 5 0 89 93 0.030 Inf

PLXNA4 5 0 89 93 0.030 Inf

RAPGEFL1 5 0 89 93 0.030 Inf

RGS14 5 0 89 93 0.030 Inf

SCN7A 5 0 89 93 0.030 Inf

THEG 5 0 89 93 0.030 Inf

VEPH1 5 0 89 93 0.030 Inf

ZFP90 5 0 89 93 0.030 Inf

LENG8 7 1 87 92 0.033 7.339

NIPBL 7 1 87 92 0.033 7.339

TECPR2 7 1 87 92 0.033 7.339
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predicted pathogenic by at least five out of seven com-
putational methods (SIFT, PolyPhen2, LRT, Mutatation-
Taster, M-CAP, CADD, and REVEL). The potential
disease causing variants were only performed in domin-
ant inheritance pattern, and there were 35 and 15 SNPs
identified in these two pedigrees, respectively (Table 5
and 6). Twelve and seven candidate genes were

identified in pedigree 1 and 2, respectively (Table 7).
The gene COL1A2, a pathogenic gene in pedigree 2, was
also reported to be associated with SAH phenotype [15].

Putative pathogenic genes for SAHs
Protein–protein interactions were known as mediating
many cellular functions, including cell cycle progression,

Table 3 Candidate genes in SAH identified by SKAT-O analysis

Gene P value Number of Marker All Number of Marker Test MAC m Method bin MAP

OBSCN 0.005 37 36 40 37 ER.A −1.000

ABCG8 0.010 8 7 7 7 ER 0.003

PIGG 0.010 9 7 7 7 ER 0.003

GOLGA2 0.021 6 6 6 6 ER 0.007

MTMR4 0.021 7 7 7 6 ER 0.007

MYH1 0.021 6 6 6 6 ER 0.007

TCF3 0.021 6 6 6 6 ER 0.007

KMT2C 0.026 9 9 9 9 ER 0.001

FBN3 0.039 13 12 12 11 ER 0.000

ABCG5 0.044 5 5 5 5 ER 0.014

BCL9 0.044 5 5 5 5 ER 0.014

C1orf94 0.044 5 5 5 5 ER 0.014

CCDC102A 0.044 7 5 5 5 ER 0.014

CEBPZ 0.044 5 5 5 5 ER 0.014

COG3 0.044 4 4 5 5 ER 0.014

CTC1 0.044 5 5 5 5 ER 0.014

FDXR 0.044 5 5 5 5 ER 0.014

GRIK3 0.044 5 5 5 5 ER 0.014

INCENP 0.044 3 3 5 5 ER 0.014

IQGAP3 0.044 6 5 5 5 ER 0.014

KNDC1 0.044 5 5 5 5 ER 0.014

LETMD1 0.044 4 4 5 5 ER 0.014

METTL22 0.044 4 4 5 5 ER 0.014

NCOA6 0.044 5 5 5 5 ER 0.014

OTOGL 0.044 5 4 5 5 ER 0.014

PDZD7 0.044 3 3 5 5 ER 0.014

PIF1 0.044 6 5 5 5 ER 0.014

PLXNA4 0.044 4 4 5 5 ER 0.014

RAPGEFL1 0.044 3 3 5 5 ER 0.014

RGS14 0.044 4 4 5 5 ER 0.014

SCN7A 0.044 5 5 5 5 ER 0.014

THEG 0.044 5 5 5 5 ER 0.014

VEPH1 0.044 5 5 5 5 ER 0.014

ZFP90 0.044 4 4 5 5 ER 0.014

LENG8 0.050 8 8 8 8 ER 0.002

NIPBL 0.050 8 8 8 8 ER 0.002

TECPR2 0.050 9 8 8 8 ER 0.002
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Fig. 3 The number of overlapped genes between burden test and SKAT-O analysis

Table 4 The enriched pathways for the overlapped genes between burden test and SKAT-O analysis

Pathways Genes

Adherens_junction TJP1 PTPRM

Angiogenesis FGFR2 UNC5B NOTCH3 FGFR4 FLT4

Apelin_signaling_pathway NOTCH3 ADCY8

Cell_cycle_Role_of_SCF_complex_in_cell_cycle_regulation FZR1 MAPK8

Degradation_of_the_extracellular_matrix FBN3 ADAMTS18 NCAM1 NTN4

LAMB2 LAMB1 CAPN1 COL20A1 FBLN2

COL14A1 ITGA2 NCAN P4HA2

Development_TGF-beta_receptor_signaling FZR1

Elastic_fibre_formation FBN3 FBLN2

Endochondral_Ossification RUNX2

ERK_signaling MYH1 TCF3 FBN3 ECM2 FGFR2 PRKCQ RPS6KA1 FLT4

TCF19 LAMB2 LAMB1 CAPN1 COL20A1 RASGRP1

NOTCH3 ADCY8 ARHGEF16 CDH12 CDH19 COL14A1 FGFR4

IL12RB1 ITGA2 MAPK8 NCAN NTRK3 PLCD4 ARHGEF2

HTLV-I_infection TCF3 POLE ADCY8 CRTC3 HLA-DPA1 MAPK8

Integrin_Pathway MYH1 FBN3 ECM2 PRKCQ LAMB2 LAMB1 CAPN1

COL20A1 ADCY8 CD36 COL14A1 ITGA2 MAPK8 NCAN

PAK_Pathway MYH1 TCF3 TJP1 FGFR2 NOX4 PRKCQ PTPRH

TCF19 NOTCH3 FGFR4 FLT4 IL12RB1

MAPK8 NTRK3 PLCD4 PTPN3 PTPRM GPLD1

Sertoli-Sertoli_Cell_Junction_Dynamics MYH1 TJP1 SAFB ITGA2 MAPK8 RAB17 RAB34 ARHGEF2

SMAD_Signaling_Network PSMB8 PSMD5

Smooth_Muscle_Contraction NULL

TGF-beta_receptor_signaling_activates_SMADs MTMR4

TGF-beta_receptor_signaling ZFYVE16

TGF-beta_signaling_pathway_KEGG ID4 INHBA SMAD6 ZFYVE16

TGF-beta_Signaling_Pathways MAPK8 RUNX2
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signal transduction, and metabolic pathways. The
genes that interacted with the known SAH genes may
influence the SAH phenotypes by participating in the
same network/pathway. Basic on previous studies, we
collected 28 SAH associated genes (Table S6), and
these genes were further assessed the direct and in-
direct associations with other genes by STRING [35].
In total, we identified 47 putative interacted genes
with the SAH (Table S7). To look deep into the
pathogenic genes associated with SAH, we selected

the overlapped genes among the results from the bur-
den test, SKAT-O analysis and putative interacted
genes (Table 8). Finally, we identified 25 putative
pathogenic genes for SAH.
Among these genes, FBLN2 has been identified a

member of fibulin family, and is responsible for main-
tenance of the adult vessel wall after injury [8]. BMP7
was reported to play an important role in facilitating
recovery after stroke in rat [9]. ITGA2 is responsible
for adhesion of platelets and other cells to collagens

Table 5 The potential disease causing SNPs in dominant inheritance pattern for pedigree 1

Chr Pos Function Gene SIFT Pp2 LRT MT M-CAP CADD REVEL

1 2.18E+ 08 exonic GPATCH2 0.00 1.00 D D 0.23 34.0 0.65

1 2.24E+ 08 exonic CCDC185 0.04 1.00 . D 0.02 19.6 0.35

1 2.25E+ 08 exonic DNAH14 0.01 0.56 U D 0.04 23.0 0.09

2 54,609,069 intergenic C2orf73 SPTBN1 0.00 . . N 0.00 0.2 0.03

2 55,795,456 exonic PPP4R3B . 0.39 D D 0.03 23.6 0.72

2 1.79E+ 08 exonic TTN 0.23 0.02 . N 0.05 14.1 0.12

2 1.8E+ 08 exonic TTN 0.16 0.80 . D 0.03 19.0 0.44

2 2.2E+ 08 exonic CFAP65 0.00 0.98 N D 0.01 34.0 0.19

2 2.2E+ 08 exonic STK11IP . . N A . 39.0 .

2 2.23E+ 08 exonic PAX3 0.02 0.22 D D 0.07 21.4 0.48

3 49,169,107 exonic LAMB2 0.03 0.15 N D 0.02 22.2 0.11

3 1.83E+ 08 intronic ATP11B 0.03 . . N 0.01 5.8 0.02

3 1.94E+ 08 exonic ATP13A3 0.32 0.15 N N 0.03 6.8 0.25

4 871,443 exonic GAK 0.06 0.42 D D 0.07 26.3 0.53

4 6,873,370 exonic KIAA0232 0.04 0.20 D D 0.01 25.1 0.23

4 74,276,089 exonic ALB 0.03 1.00 N N 0.05 22.4 0.02

7 72,397,374 exonic POM121 0.07 0.51 N N 0.01 23.2 0.03

7 87,179,859 exonic ABCB1 0.18 0.01 D D 0.05 14.0 0.26

7 1.17E+ 08 exonic CTTNBP2 0.01 0.99 D D 0.04 27.4 0.36

7 1.29E+ 08 exonic IRF5 0.21 0.00 N N 0.03 15.1 0.25

7 1.3E+ 08 exonic CPA4 0.00 0.89 D D 0.30 25.1 0.31

9 1.31E+ 08 exonic ODF2 0.00 0.99 D D 0.02 28.3 0.31

12 6,458,130 exonic SCNN1A 0.15 . . D 0.10 13.7 0.09

14 95,562,384 exonic DICER1 0.18 0.00 N N 0.05 0.5 0.02

16 89,865,550 intronic FANCA 0.00 . . N 0.01 3.8 .

17 7,231,013 exonic NEURL4 0.00 0.01 D D 0.04 22.7 0.26

17 7,483,148 exonic CD68 0.00 0.19 N D 0.02 22.5 0.19

17 7,691,426 exonic DNAH2 0.08 0.43 N D 0.01 22.5 0.06

17 73,564,902 exonic LLGL2 0.01 0.71 D D 0.04 27.4 0.53

17 74,085,300 exonic EXOC7 0.22 0.02 D D 0.00 17.8 0.08

20 55,777,539 exonic BMP7 0.01 0.74 D D 0.08 29.0 0.22

21 46,929,308 exonic COL18A1 0.14 0.16 N N 0.10 10.5 0.12

22 30,074,259 exonic NF2 0.59 0.02 D D 0.08 18.4 0.43

22 50,721,594 exonic PLXNB2 0.51 0.00 N N 0.05 14.3 0.27

22 50,945,311 exonic LMF2 0.00 0.99 D D 0.67 28.0 0.41

Hao et al. Molecular Brain           (2020) 13:82 Page 9 of 12



and organizations of extracellular matrix. Previous
study demonstrated ITGA2-deficient mice overex-
pressed transforming the growth factor TGFβ [16,
19], which was known to be highly associated with
aortic aneurysm and IA. Moreover, both ITGA2 and
TTN were involved in hemostasis [3, 30]. Notably,
Notch signaling plays a pivotal role during vascular
development [4, 18]. Mutations in NOTCH3 have
been identified as the underlying cause of cerebral
autosomal dominant arteriopathy with subcortical in-
farcts and leukoencephalopathy (CADASIL), the most
common inherited stroke and dementia syndrome in
the group of degenerative small vessel diseases [23].
Our findings demonstrated the therapeutic potential
of modifying these signaling in SAHs.

Discussion
Subarachnoid hemorrhage (SAH) is the rarest but most
fatal type of stroke, identification of genetic variants that
confer susceptibility to SAH is clinically important to
prevent it [20]. In the present study, we performed WES
for SAH cases and controls, to identify causal variations
that associated with SAH risk in China, which enabled
us to systemically evaluate protein-altering variants and
candidate functional genes.
Across GWAS with a total of 188 samples, we found a

genome-wide significant association of SNPs in TPO and
PALD1 with SAH risk. These two genes are involved in
disorders of thyroid hormonogenesis and formation of

Table 6 The potential disease causing SNPs in dominant inheritance pattern for pedigree 2

Chr Pos Function Gene SIFT Pp2 LRT MT M-CAP CADD REVEL

1 1.5E+ 08 exonic HIST2H2AC 0.00 0.10 N D 0.024 8.0 0.15

1 1.52E+ 08 exonic RPTN 0.01 0.02 . N 0.003 16.3 0.01

1 1.57E+ 08 exonic IQGAP3 0.00 1.00 D D 0.154 35.0 0.84

1 1.62E+ 08 exonic DUSP12 0.10 1.00 D D 0.009 23.4 0.16

6 56,471,328 intronic DST 0.01 0.17 N . 0.033 12.0 0.10

7 20,782,555 exonic ABCB5 0.00 0.99 D D 0.039 27.8 0.70

7 29,132,261 exonic CPVL 0.04 0.99 N D 0.142 26.6 0.47

7 94,057,039 exonic COL1A2 0.10 0.98 D N 0.082 26.2 0.44

7 1.01E+ 08 exonic MUC17 0.02 0.61 . N 0.003 5.6 0.04

7 1.51E+ 08 exonic CHPF2 0.03 0.89 D D 0.049 23.3 0.32

8 90,936,937 exonic OSGIN2 0.38 0.03 D D 0.01 11.3 0.07

17 3,030,476 exonic OR1G1 0.05 0.01 . N 0 13.6 0.03

17 4,619,845 exonic ARRB2 0.04 0.90 D D 0.034 32.0 0.15

17 6,683,525 exonic FBXO39 0.14 0.09 D D 0.024 19.8 0.17

17 7,733,695 exonic DNAH2 0.01 0.89 N N 0.004 23.8 0.11

Table 7 The candidate genes in two pedigrees

Candidate genes in pedigree 1 Candidate genes in pedigree 2

GPATCH2 IQGAP3

CFAP65 DUSP12

PAX3 ABCB5

GAK CPVL

KIAA0232 COL1A2

CTTNBP2 CHPF2

CPA4 ARRB2

ODF2

NEURL4

LLGL2

BMP7

LMF2

Table 8 The overlapped genes among the results from burden
test, SKAT-O analysis and PPI analysis

Candidate pathogenic genes

MYH1 CD36

TJP1 COL14A1

FGFR2 FGFR4

NCAM1 FLT4

NOX4 FZR1

RPS6KA1 ID4

LAMB2 IL12RB1

LAMB1 ITGA2

COL20A1 MAPK8

FBLN2 NCAN

POLE P4HA2

NOTCH3 RUNX2

ADCY8
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vascular endothelium, respectively. Previous studies of IA
have identified SERPINA3 (rs4934) as associated risk loci
in the Finnish population, and CSPG2 (rs251124) and
HSPG2 (rs3767137) loci as susceptibility sites in the Dutch
population. However, in our cohorts, there was no signifi-
cantly associated signal in these genes, which may due to
the different genetic background among the populations.
We then investigated the role of low-frequency variants

of intermediate effect in SAH risk through rare SNPs ana-
lysis. The pathogenic genes with rare, damaging SNPs
were enriched in some pathways related to cellular
organization, i.e., degradation of the extracellular matrix;
and transcription factor signal, i.e., TGF-beta signaling
pathway. TGF-beta signaling plays a vital role in vasculo-
genesis and maintenance of blood vessel, and is involved
in aortic aneurysm and IA. These results highlight the
functional importance of rare variations in SAH risk.
The two pedigree samples were mainly used to performed

Mendelian inheritance analysis, and it revealed autosomal
dominant inheritance of pathogenic genes. In the same time,
some potential disease causing variants were also found, such
as the gene COL1A2 which was reported to be associated
with SAH phenotype [15]. Combing the results from the net-
work analysis of known SAH-associated genes, we obtained
a list of candidate susceptibility genes. Among these genes,
several were demonstrated to be associated with mainten-
ance of blood vessel, including FBLN2, ITGA2, BMP7, and
NOTCH3. NOTCH3 is known to be associated with the
most common inherited stroke, CADASIL. These potential
targets needed to be further validated in experiment models
both in vivo and in vitro, which may facilitate to develop clin-
ical strategies for early detection and intervention.
In conclusion, we have identified a key role for rare

variations in SAH and discovered SNPs in new complex
loci. However, there are still some limitations to our
current study due to the small sample size and availabil-
ity of family genetic data. In future, the identified candi-
date genes, i.e., TPO, PALD1 and ITGA2, will be
necessary to validate in independent study populations
or a larger sample size for Chinese population. Deter-
mination of genotypes for SNPs in these genes will guide
the development of therapeutic strategies for SAH.
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