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Knockdown of Son, a mouse homologue of
the ZTTK syndrome gene, causes neuronal
migration defects and dendritic spine
abnormalities
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Abstract

Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, a rare congenital anomaly syndrome characterized by intellectual
disability, brain malformation, facial dysmorphism, musculoskeletal abnormalities, and some visceral malformations
is caused by de novo heterozygous mutations of the SON gene. The nuclear protein SON is involved in gene
transcription and RNA splicing; however, the roles of SON in neural development remain undetermined. We
investigated the effects of Son knockdown on neural development in mice and found that Son knockdown in
neural progenitors resulted in defective migration during corticogenesis and reduced spine density on mature
cortical neurons. The induction of human wild-type SON expression rescued these neural abnormalities, confirming
that the abnormalities were caused by SON insufficiency. We also applied truncated SON proteins encoded by
disease-associated mutant SON genes for rescue experiments and found that a truncated SON protein encoded by
the most prevalent SON mutant found in ZTTK syndrome rescued the neural abnormalities while another much
shorter mutant SON protein did not. These data indicate that SON insufficiency causes neuronal migration defects
and dendritic spine abnormalities, which seem neuropathological bases of the neural symptoms of ZTTK syndrome.
In addition, the results support that the neural abnormalities in ZTTK syndrome are caused by SON
haploinsufficiency independent of the types of mutation that results in functional or dysfunctional proteins.

Keywords: SON, Zhu-Tokita-Takenouchi-Kim syndrome, Brain malformation, Intellectual disability, Neuronal migration,
Spinogenesis

Introduction

Recent genetic studies identified 31 individuals exhibiting
intellectual disability (ID) and/or developmental delay with
de novo heterozygous mutations in SON, which was estab-
lished as Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome
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[1-6]. ZTTK syndrome was further characterized as a con-
genital anomaly syndrome of ID, brain malformation, facial
dysmorphism, musculoskeletal abnormalities, and less com-
mon visceral malformations [1, 2, 4]. The mutations found
to be associated with ZTTK syndrome are mostly frame-
shift mutations and nonsense substitutions generating a
premature termination codon [1-6], and transcripts of the
mutant gene seem to be degraded due to nonsense-
mediated mRNA decay (NMD) [1]; this has made ZTTK
syndrome to be regarded as an entity caused by SON
haploinsufficiency.
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SON is a ubiquitously expressed and evolutionarily
conserved gene in vertebrates and is located on the hu-
man chromosome region 21q22.11 [4]. It encodes the
DNA- and RNA-binding protein SON, which functions
in RNA splicing as well as gene repression [7-13]. A
wide variety of genes are, thus, under the control of
SON, and SON has been reported to be involved in cell
cycle regulation and stem cell maintenance [7-12].
However, the functional significance of SON in neural
development is largely unknown, and the pathological
consequence of SON haploinsufficiency underlying the
neural phenotypes of ZTTK syndrome, such as ID and
brain malformation, remains undetermined. In this re-
port, we revealed through knockdown experiments in
the developing mouse brain that Son insufficiency
caused neuronal migration abnormalities and reduced
spine density. Rescue experiments that induced the ex-
pression of human wild-type SON protein and truncated
SON proteins encoded by disease-associated mutant
SON genes provided further information relevant to the
pathophysiology of ZTTK syndrome.

Materials and methods

Animals

All animals were used in accordance with an animal
protocol approved by the Animal Care and Use Com-
mittee of the Institute for Developmental Research,
Aichi Developmental Disability Center. Timed-pregnant
ICR mice were purchased from Japan SLC (Hamamatsu,
Japan).

Antibodies

We raised an antibody against mouse SON by immuniz-
ing rabbits with a keyhole limpet hemocyanin-fused
mouse SON peptide (NM_178880, residues 4—23) (Bio-
matik, Wilmington, DE). The other antibodies used in
this study were as follows: anti-HA (6E2, 2367) (Cell Sig-
naling Technology, Beverly, MA), anti-pB-actin (AC-15,
A5441), anti-SRSF2/SC35 (SC-35, SAB4200725) (Sigma-
Aldrich, St. Louis, MO), anti-green fluorescent protein
(GFP) (A10262), Alexa-conjugated secondary antibodies
(Invitrogen, Waltham, MA), and horseradish peroxidase
(HRP)-conjugated secondary antibodies (Jackson Immu-
noResearch, West Grove, PA).

Plasmid construction

Short hairpin RNA (shRNA) vectors were constructed
by inserting cDNAs of the following shRNAs into the
pLLC vector [14]: shRNA#1 (5'-AGGCTCAATTACTT
GAAATA-3") [8] and shRNA#2 (5'-GCTGAGCGTT
CTATGATGT-3") [15]. The pCAGGS vector, kindly
provided by Dr. Miyazaki in Osaka University, was engi-
neered to express HA-tagged human SON (hSON),
shRNA-resistant human SON (hSONr), or a disease-
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associated mutant SON (hSONm1 or hSONm2). hSONr
was derived from SON cDNA containing three nucleotide
substitutions within the target sequence of ShRNA#1.

Cell culture

Neuro-2a and HEK293 cells were obtained from ATCC
(Manassas, VA) and RIKEN BRC (Tsukuba, Japan), re-
spectively. Each cell line was maintained with DMEM sup-
plemented with 10% FBS, penicillin, and streptomycin
under standard conditions. The expression plasmids were
transfected with polyethyleneimine (Polysciences, Inc.,
Warrington, PA) or Lipofectamine 2000 (Invitrogen), ac-
cording to manufacturer’s directions.

In utero electroporation (IUE)

Various combinations of plasmids were transfected into
neural progenitors on the lateral ventricular surface of
E14.5 embryos by IUE as previously described [16]. Elec-
troporation was performed by administering five conse-
quent electronic pulses at an intensity of 35V for a
duration of 50 ms with 450-ms intervals using a NEPA21
SuperElectroporator (NEPA Gene, Chiba, Japan). For
neuronal migration analysis, 1 pg of shRNA vector with
1.5pug of the pCAGGS vectors harboring the various
forms of human SON cDNA described above were ap-
plied. For dendritic spine formation analysis, a plasmid
mixture containing 1 pg of shRNA vector with or with-
out 0.5 pg of the hSON expression vectors was applied.

Immunocytochemistry and immunohistochemistry
Neuro-2a cells were grown on poly-L-lysine coated glass
coverslips. The cells were fixed with 4% paraformalde-
hyde and permeabilized with 0.1% Triton X-100.
Immunocytochemical staining was performed with the
anti-SON antibody and Alexa-conjugated secondary
antibodies (Invitrogen).

Paraffin-embedded brain tissues were sectioned at a
thickness of 4 pm and subjected to immunohistochemi-
cal staining and hematoxylin and eosin (HE) staining.
Anti-SON immunoreactivity was visualized using EnVi-
sion (Dako, Glostrup, Denmark). All images were ac-
quired with BX60 microscope (Olympus, Tokyo, Japan).

Neuronal migration analysis and spine density analysis

Mice subjected to IUE were sacrificed at E18.5 or P60,
and perfused with 4% paraformaldehyde in PBS. Then
the mice were dissected and obtained brains were post-
fixed in paraformaldehyde solution for 2-24h. The
brains were embedded in 3% agarose and sectioned at a
thickness of 50-100 um using a VT1200S vibrating
microtome (Leica Microsystems Wetzlar, Germany).
The coronal sections were stained with an anti-GFP
antibody to visualize Son knockdown cells. The distribu-
tion of GFP-positive cells at E18.5 was examined to
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assess neuronal migration. For spine density analysis,
dendrites of pyramidal neurons in cortical layer II/III at
P60 were examined. The number of spines on each den-
drite at between 30 pum and 80 pm from the soma was
counted, and the spine density was represented as the
number of spines per dendrite length of 10 pum. All im-
ages were acquired using a FV1000 (Olympus) or
LSM880 (Carl Zeiss, Gottingen, Germany) confocal laser
scanning microscope. Image processing was performed
with Fiji (http://fiji.sc) and Photoshop (Adobe Systems,
San Jose, CA).

Statistical analyses

Statistical significance was determined using one-way
ANOVA followed by a Dunnett’s post hoc test for mul-
tiple comparisons using Prism 8 (GraphPad Software,
San Diego, CA).

Results

The human SON and mouse Son genes encode 2426-
amino-acid and 2444-amino-acid proteins, respectively,
and share 84.2% homology [13] (Fig. 1a). We raised an
antibody against mouse SON and found that it recog-
nized a major band of approximately 260 kDa, which
corresponds to the predicted size, and a few lower mo-
lecular weight bands upon Western blot analysis of
mouse embryonic brain lysates (Fig. 1b). These bands
were almost completely absent after the antibody was
preabsorbed with the antigen peptide, confirming its
specificity (Fig. 1b, right panel). In immunocytochem-
istry, the antibody recognized nuclear speckles in
Neuro-2a cells, and the signals were partially colocalized
with SRSF2, a splicing factor that, with SON, forms the
core of speckles [17], further confirming the specificity
of the antibody (Fig. 1c). The antibody worked well for
immunohistochemistry as well, and we found that the
most cells in the developing mouse brain at E15.5
expressed SON and that SON signals were especially
conspicuous as nuclear speckles in presumptive migrat-
ing neuronal progenitors in the intermediate zone (1Z)
and neurons in the cortical plate (Fig. 1d). In addition,
we confirmed that the SON expression was maintained
in mature neurons at P60 (Fig. 1d).

To reveal the functional significance of SON in neural
progenitors, we then applied IUE to knockdown Son
specifically in these cells and examined the effects on
migration. We generated two shRNA expression con-
structs targeting independent sites of Son mRNA (Fig. 2a)
and confirmed that both shRNAs reduced SON expres-
sion levels in Neuro-2a cells to 17.8% (shRNA#1) and
32.6% (shRNA#2) of that in the control (Fig. 2b). IUE
was performed at E14.5 to deliver shARNA#1 or shRNA#2
to neural progenitors, and the distribution of SON
knockdown cells in the developing cortex at E18.5 was
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examined. As shown in Fig. 2c, GFP-positive Son knock-
down neurons (shRNA#1 and shRNA#2) in the upper
cortical plate (UCP) were sparse compared with GFP-
positive neurons without Son knockdown (control). The
quantification of GFP-positive cells in each cortical layer
revealed that fewer Son knockdown neurons than con-
trol neurons were distributed in the UCP (Fig. 2d). Al-
though slightly more Son knockdown cells than control
cells were distributed in the lower cortical plate (LCP)
and IZ, the differences were not statistically significant.
In addition, we examined SON expression levels in GFP-
positive shRNA-introduced cells in electroporated samples,
and confirmed that the SON signals in GFP-positive cells
was hardly detectable, while that in GFP-negative cells was
clearly observed as nuclear speckles (Fig. 2e). These results
indicate that canonical Son expression in neural progenitors
is indispensable for normal neuronal migration.

Next, we performed rescue experiments by overex-
pressing shRNA-resistant human SON (hSONr) in
knockdown cells. In addition, we examined constructs
expressing two forms of disease-associated mutant SON.
hSONm1 is a truncated mutant without most of the
known functional domains, while hSONm2 lacks RNA-
binding motifs and the C-terminal half of the RS domain
(Fig. 3a). The former is derived from a SON mutation re-
ported by Kim et al. [1], and the latter is from the most
prevalent mutation found in ZTTK syndrome [1, 3, 4].
The effective production of hSONr, hSONm1, and
hSONm?2 in HEK293 cells in the presence of shRNA#1
was confirmed (Fig. 3b). Then, the vectors expressing
wild-type or mutant SON were introduced along with
shRNA vectors into neural progenitors at E14.5, and the
distribution of GFP-positive cells was examined. As
shown in Fig. 3c and d, migration defects induced by
shRNA#1 were rescued by the overexpression of hSONr
(shRNA#1 + hSONr), confirming that the defects were
caused by SON insufficiency in neural progenitors. Intri-
guingly, the overexpression of hSONm2 (shRNA#1 +
hSONm2), but not that of hSONm1l (shRNA#1 +
hSONm1), rescued the defects as well, indicating that
hSONm?2, like hSONr, exerts sufficient functions for
neuronal migration, while hRSONm1 does not.

Since ID is not always accompanied by cerebral cortical
malformation due to migration abnormalities, we rea-
soned that SON haploinsufficiency affects other factors es-
sential for intellectual abilities. Therefore, we examined
the dendritic spine density on Son knockdown neurons.
The density of dendritic spines on Son knockdown cortical
neurons at P60 (7.6 + 0.5 per 10 pum) was decreased by ap-
proximately 30% compared to that on control neurons
(10.6 £ 0.9 per 10 um) (Fig. 4a, b). The forced expression
of hSONr resulted in a dendritic spine density nearly
equal to that on control neurons, confirming that SON in-
sufficiency resulted in decreasing in the numbers of
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Fig. 1 SON distribution in neural cells and in the developing mouse brain cortex. (a) A schematic representation of the structure of full-length
human and mouse SON. The arrow indicates the portion used as an antigen for antibody production. (b) Characterization of the anti-SON
antibody. E16.5 mouse brain lysates were used for Western blotting. The antibody detected multiple bands. The major band, the 260-kDa band
indicated by the arrow, was almost completely absent after the antibody was absorbed with glutathione s-transferase-fusion antigen peptide

(right lane). (c) The localization of SON in the nucleus of Neuro-2a cells. Cells were stained with an anti-SON (green) or anti-SRSF2 (red) antibody.
The nuclei were stained with DAPI (blue). The arrowheads indicate the colocalization of SON and SRSF2. (d) Immunohistochemical distribution of
SON in the developing mouse brain and its subcellular localization in mature neurons. The left panel shows a hematoxylin and eosin (HE)-stained
section of the E15.5 mouse cerebral cortex. The layered structure of the developing cortex is shown on the left. MZ: marginal zone; CP: cortical
plate; IZ: intermediate zone; SVZ: subventricular zone; VZ: ventricular zone. The middle panel shows the distribution of SON in an adjacent section
to the HE-stained section. At E15.5, most neuronal progenitors and neurons expressed SON. The right upper panel shows a higher magnification

view of the boxed area in the middle panel. SON was localized to the nucleus and was present as speckles, as in cultured cells. A similar
subcellular distribution of SON was observed in mature neurons at P60 (the left lower panel)

dendritic spines (Fig. 4a, b). These data indicate that SON
is necessary for normal spine formation during neural de-
velopment and that SON haploinsufficiency may cause
dendritic spine abnormalities. Again, the overexpression
of hSONm2, but not that of hRSONm1, rescued the abnor-
malities as well, indicating that hSONm2 retains functions
necessary for spine formation, while hSONm1 does not
(Fig. 4a, b).

Discussion
In this report, we clarified that the canonical expression
of Sonm is necessary for normal neuronal migration and

dendritic spine formation in the developing mouse cerebral
cortex. In addition, a truncated form of SON encoded by
the most prevalent mutant SON identified in ZTTK syn-
drome patients can ameliorate the neuronal abnormalities
induced by Son knockdown. These findings provided some
hints to understand the pathophysiological mechanisms
underlying the neural symptoms of ZTTK syndrome.
Among the 31 de novo mutations in the SON gene re-
ported to be associated with ZTTK syndrome so far,
twenty-eight encode truncated SON proteins due to either
frameshift or nonsense substitutions that generate prema-
ture termination codons (Table 1). These truncated SON
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Fig. 2 SON is necessary for normal neuronal migration. a A schematic representation of the shRNA target sites. The closed and open arrowheads
indicate the target positions of ShRNA#1 and shRNA#2, respectively, on SON mRNA. b Characterization of Son shRNA-expressing vectors. Neuro-2a
cells were transfected with parental pLLC vector (control) or vectors engineered to express Son shRNAs (shRNA#1 or shRNA#2). Cell lysates were
subjected to Western blotting with an anti-SON antibody to assess the effect of knockdown. B-actin was used as a loading control and was used
to normalize quantified values of SON signals. ¢ Representative images showing the distribution of GFP-positive cells transfected with either
empty vectors (control) or a vector expressing ShRNA#1 or shRNA#2 in the developing mouse cerebral cortex. The layered structure is shown on
the left. UCP: upper cortical plate; LCP: lower cortical plate; other abbreviations as described in Fig. 1d. The cortical plate is divided into the UCP
and LCP according to cell density [18]. Transfection was performed by IUE at E14.5. Coronal brain sections were prepared at E18.5 and stained for
GFP (green) and DAPI (blue). d The quantification of GFP-positive cells in each layer of the developing cortex. Each layer is described as in (c).
Total numbers of GFP-positive cells studied in each brain ranged 306-567. Error bars represent standard error of the mean (SEM). n=4; *p < 0.05
by one-way ANOVA followed by Dunnett’s test. The original data are available in Additional file 1 [Table S1]. e The confirmation of Son
knockdown in shRNA-introduced neurons. Coronal sections prepared as described in (c) were stained for GFP (green), SON (red), and DAPI (blue)

proteins, if produced, vary in length, with their C-termini
distributed widely over the normal full-length SON pro-
tein and function differently from one another. However,
mRNAs bearing a premature termination codon are often
targeted by NMD, and are degraded [19]. Kim et al. re-
vealed that some mutant SON mRNAs and proteins are
indeed highly downregulated in the peripheral blood
mononuclear cells of patients [1], suggesting that ZTTK
syndrome is caused by SON haploinsufficiency; truncated
proteins encoded by mutant SON are not involved in
pathogenesis of ZTTK syndrome. The pathophysiological
consequence of SON insufficiency in brain development is
therefore of great interest to understand the neural symp-
toms of ZTTK syndrome. In this respect, our finding that

the number of neurons that migrated into the UCP de-
creased by approximately 20% due to Son knockdown pro-
vides a concrete evidence that SON insufficiency in neural
progenitors results in migration defects, which seems to
be the pathological basis of brain malformation in ZTTK
syndrome. More importantly, we found reduced spine
density on Son knockdown neurons. Dendritic spine dys-
genesis, such as a reduction in the number of spines and
morphological abnormalities of spines, in cortical neurons
was originally reported as a common pathological feature
found in mentally retarded children with normal karyo-
types [20]. The similar spine abnormalities of cortical neu-
rons were identified also in genetic disorders associated
with mental retardation, a former name for ID (reviewed
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in [21]). Finally, the search for genetic causes of ID has
identified numerous mutated genes that may be involved
in synapse formation and the regulation of dendritic spine
morphology [22]. To our knowledge, postmortem reports
of ZTTK syndrome patients are unavailable. Therefore, re-
duced spine density on Son knockdown neurons is an im-
portant finding and suggests that spine defects are the
pathological basis of ID in ZTTK syndrome.

Rescue experiments that involved the introduction of
two forms of disease-associated mutant SON proteins
confirmed that the truncated SON proteins encoded by
mutant SON genes differ in their residual functions, even

though both mutations cause ZTTK syndrome. As
shown in Fig. 3a, hSONmL is a severely truncated SON
with 683 amino acids and hSONm?2 is a mildly truncated
SON with 2003 amino acids. Previous studies have re-
vealed that the RS domain and the G-patch that consti-
tutes RNA-binding motifs are the core motifs necessary
for SON mediated RNA splicing [7] and a middle por-
tion partially overlapping with a unique amino acid re-
peats is the DNA-binding region that bind to human
genomic and viral DNAs [9, 23]. Based on the domain
structure, hSONm2 lacking an RNA-binding motif and
part of the RS domain is expected to be functional in
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part, as the DNA-binding domain remains intact. In
contrast, hSONm1 lacking most of the identified do-
mains were supposed to be hardly functioning. Indeed,
the overexpression of hSONm2, like wild-type SON,
successfully rescued the neuronal abnormalities, while
the overexpression of hSONmI, failed to do so in our
rescue experiments. These data indicate that the
hSONm1-coding mutation is a loss-of-function muta-
tion, but that the hSONm2-coding mutation retains
function comparable, at least in the neural development,
to that of wild-type SON. As mentioned above, it is sug-
gested that ZTTK syndrome is caused by SON haploin-
sufficiency; potentially functional proteins encoded by
mutant SONs are not involved in pathogenesis of ZTTK
syndrome due to NMD [1]. It is, therefore, not surpris-
ing that hSONm2 encoded by the most prevalent mu-
tant SON associated with ZTTK syndrome retained
considerable function in neural development. Rather, the
finding may further support noninvolvement of trun-
cated proteins encoded by disease-associated mutant
SON s in pathogenesis of ZTTK syndrome.

The molecular mechanisms underlying the neural ab-
normalities caused by SON mutations remain unclear
because the roles of the multifunctional nuclear protein
SON are diverse and not fully understood. The finding

that hSONm2, which lacks an RNA-binding motif and
part of the RS domain, behaved like wild-type SON in
the rescue experiments may provide hints for these
mechanisms. A simple explanation for this result is that
the loss of the RNA splicing function of SON does not
play a significant role in the observed neuronal abnor-
malities. Instead, other functions, such as transcriptional
regulation, are more relevant to neural pathology since
SON interacts with more than a thousand of genes via
its DNA-binding region and is involved in the transcrip-
tional repression of many target genes [9]. This is sup-
ported by the fact that rare non-truncating mutations,
i.e., missense mutations [4] and an in-frame deletion [1],
identified in ZTTK syndrome patients, are located exclu-
sively in and around the genomic region that encodes
the DNA-binding region (Table 1). However, there is a
possibility that hRSONm?2 influences SON-mediated RNA
splicing because of its structural similarity to SON E, a
physiological isoform of SON. This truncated isoform,
which lacks an RNA-binding motif, has been reported to
enhance full-length SON-mediated RNA splicing [9].
Therefore, it is possible that hSONm2 together with
residual mouse full-length SON rescues RNA splicing
deficits caused by SON insufficiency. Many more investi-
gations are necessary to understand the detailed molecular
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Table 1 Summary of mutation types identified in SON in association with ZTTK syndrome

Mutation type cDNA Protein (predicted) No. of case Reference
Frame-shift deletion c.268del p.Sero0Valfs*59 1 m
(20 cases) C.1881_1882del® pVal629Alafs*56 1 1]
c.2365del p.Ser789Alafs*8 1 [1]
€.3597_3598del p.Pro1200Argfs*17 1 m
€.3852_3856del p.Met1284llefs*2 2 [1,4]
c4055del p.Pro1352GInfs*14 1 [1
c4358_4359del p.Thr1453Serfs*11 1 m
c4640del p.His1547Leufs*76 1 M
c4678del p.Glu1560Lysfs*63 1 [1]
¢.5549_5550del p.Arg1850llefs*3 1 m
€.5753_5756del” p.Val1918Glufs*87 7 [1,3,4]
c.6087del p.Ser2029Argfs*22 1 m
c.6233del p.Pro2078Hisfs*4 1 [4]
Frame-shift insertion €[4999_5013del; 5031_5032insAA]P p.[Asp1667_Asn1671del; 1 m
(2 cases) Asp1678Lysfs*9]
.6002_6003insCC p.Arg2002GInfs*5 1 m
Frame-shift duplication €.3073dup p.Met1025Asnfs*6 1 [4]
(2 cases) 4549dup p.Glu1517Glyfs*6 1 0
Nonsense substitution c286C>T p.GIn96* 1 4]
(4 cases) €394C>T pGIn132* 1 5]
€3334C>T p.Arg1112* 2 [, 21
In-frame deletion c4151_4174del24 p.Leu1384_Val1391del 1 m
Missense substitution C.[4909A > T; 5528C > Al© p.[Thr1637Ser; Ser1848Thr] 1 [4]

Whole gene deletion -

_ 1 (1]

2 These two types of mutation were examined in this study. ® An in-frame deletion and a frame-shift insertion were identified in one allele; the latter was

regarded as pathogenic. © Two substitutions were identified in one allele

mechanisms underlying the neural pathology of ZTTK
syndrome, and accumulation of clinical and genetic infor-
mation of ZTTK syndrome is also important.

In conclusion, this study revealed clearly that Son in-
sufficiency results in neuronal migration defects and
dendritic spine abnormalities in the mouse brain. Since
information about the neuropathology of ZTTK syn-
drome is extremely limited, these findings provide im-
portant neuropathological basis possibly responsible for
the neural symptoms, i.e., brain malformation and ID, of
ZTTK syndrome. In addition, rescue experiments pro-
vided further evidence supporting that putative neural
abnormalities in ZTTK syndrome are caused by SON
haploinsufficiency regardless of the residual functions of
mutant SON genes.
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