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Abstract

Altered levels of brain-derived neurotrophic factor (BDNF) have been reported in neurologically diseased human
brains. Therefore, it is important to understand how the expression of BDNF is controlled under pathophysiological
as well as physiological conditions. Here, we report a method to visualize changes in BDNF expression in the living
mouse brain using bioluminescence imaging (BLI). We previously generated a novel transgenic mouse strain, Bdnf-
Luciferase (Luc), to monitor changes in Bdnf expression; however, it was difficult to detect brain-derived signals in
the strain using BLI with p-luciferin, probably because of incomplete substrate distribution and light penetration. We
demonstrate that TokeOni, which uniformly distributes throughout the whole mouse body after systematic
injection and produces a near-infrared bioluminescence light, was suitable for detecting signals from the brain of
the Bdnf-Luc mouse. We clearly detected brain-derived bioluminescence signals that crossed the skin and skull after
intraperitoneal injection of TokeOni. However, repeated BLI using TokeOni should be limited, because repeated
injection of TokeOni on the same day reduced the bioluminescence signal, presumably by product inhibition. We

diseases.

successfully visualized kainic acid-induced Bdnf expression in the hippocampus and sensory stimulation-induced
Bdnf expression in the visual cortex. Taken together, non-invasive near-infrared BLI using Bdnf-Luc mice with
TokeOni allowed us to evaluate alterations in BDNF levels in the living mouse brain. This will enable better
understanding of the involvement of BDNF expression in the pathogenesis and pathophysiology of neurological
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Introduction

Brain-derived neurotrophic factor (BDNF), a member of
the neurotrophin family, is fundamentally involved in a
variety of functions in the developing and mature brain
[1]. Consistent with the crucial roles of BDNF in the
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central nervous system (CNS), alterations in BDNF levels
have been found in the brains of patients with neurode-
generative or neuropsychiatric diseases [2—4]. Abnormal
expression levels of BDNF have been reported in the
postmortem brains of Alzheimer’s disease [5], Parkin-
son’s disease [6], Huntington’s disease [7], depression
[8], and schizophrenia [9]. Higher expression levels of
BDNF in the brain (dorsolateral prefrontal cortex) cor-
relate with slower cognitive decline [10]. Furthermore,
lower levels of BDNF in cerebrospinal fluids are
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associated with the progression of mild cognitive impair-
ment to Alzheimer’s disease [11]. These findings indicate
that a reduction of BDNF levels in the brain may trigger
CNS dysfunction, resulting in neurological diseases.
However, because neuronal Bdnf expression is regulated
by neuronal activity [12], it is also plausible that neur-
onal dysfunction in neurological diseases can result in a
reduction of BDNF levels in the brain. Despite numerous
studies reporting reduced levels of BDNF in neurologic-
ally diseased brains, there is no evidence showing
whether reduced BDNF levels in the brain are the cause
or result of a disease.

Bioluminescence imaging (BLI) is a popular technique
for monitoring changes in expression levels of target
molecules. Compared to fluorescence imaging using
fluorescent molecules, such as green fluorescent protein,
signal intensity obtained by BLI is relatively low, and the
addition of a substrate is necessary to obtain signals.
However, excitation lights, which can be toxic, are not
required, and the signals can be obtained non-invasively
with high signal to noise ratio [13, 14]. We previously
generated a novel transgenic mouse strain termed Bdnf-
Luciferase (Luc) to monitor changes in Bdnf expression
in vivo as well as in vitro, using a firefly Luc as an im-
aging probe [15, 16]. In this mouse strain, expression
levels of Luc reflect endogenous Bdnf expression. Be-
cause levels of Luc can be evaluated by measuring bio-
luminescence produced by reaction with a substrate,
such as D-luciferin, the most popular and commonly
used substrate for in vitro and in vivo BLI, changes in
Bdnf expression can be evaluated by detecting biolumin-
escence signals. The induction of Bdnf expression can be
visualized in living neuronal cell cultures [15, 16]. In
addition, bioluminescence signals from living Bdnf-Luc
mice can be detected after intraperitoneal administration
of D-luciferin [16]. However, despite endogenous Bdnf
being highly expressed in the brain, signals from the
brain were poorly detected in the mice [16]. The emis-
sion maximum of bioluminescence light produced by
firefly Luc with D-luciferin is 578 nm at 25°C and 612
nm at 37 °C [17] and, therefore, does not penetrate bio-
logical tissues well, because of light absorption by
hemoglobin and melanin in the tissues [18, 19]. In
addition, a heterogeneous biodistribution of p-luciferin
has been reported [20, 21]. Furthermore, p-luciferin is a
specific substrate for an ATP-binding cassette (ABC)
transporter G2 (ABCG2) [22] and, therefore, it may limit
an ability of p-luciferin to cross blood-brain-barrier
(BBB). To improve BLI, novel substrates for Luc have
been developed. For example, CycLucl, a synthetic lucif-
erin, has been shown to greatly improve the sensitivity
of BLI, although the emission maximum is 612 nm [23].
Previously, Cao et al., (2018) reported in vivo imaging of
myelination events using myelin basic protein promoter-
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driven Luc transgenic mice and CycLucl [24]. In
addition, CycLucl amide nicely improved to detect bio-
luminescence signals from the brain in particular [25].
Furthermore, firefly Luc has been mutated to optimize
the detection of bioluminescence from the brain using
synthetic luciferins CycLucl, CycLuc2, and their respect-
ive amides [26]. Iwano et al., (2013) developed a series of
firefly Luc analogues to improve light penetration [27].
AkaLumine hydrochloride (also called TokeOni) is a
novel Luc substrate that produces near-infrared light
with a wavelength of approximately 680 nm and enables
visualization of signals from deep tissues [28]. Further-
more, firefly Luc has been optimized for TokeOni, and
an engineered BLI systems, termed AkaBLI, enables
visualization of bioluminescence signals from the brain
of a freely moving animal [29]. We previously detected
signals from brain regions after the systematic injection
of TokeOni into Bdnf-Luc mice; however, the signals
were detected by an invasive method (we removed the
skin to expose the skull before in vivo imaging) [16], and
it is still unclear whether changes in Bdnf expression
under physiological conditions can be visualized by non-
invasive in vivo BLL

In the present study, we examined the properties of
two Luc substrates, seMpai and TokeOni, both of
which produce near-infrared light, using Bdnf-Luc
mice, and found that TokeOni to be the most suitable
substrate for detecting bioluminescence signals from
mouse brain regions non-invasively. We successfully
visualized drug-induced and sensory stimulation-
induced Bdnf expression in the living Bdnf-Luc mouse
brain, although repeated BLI using TokeOni should
be limited, presumably because of product inhibition.
This report shows that induction of Bdnf expression
in the mouse brain can be visualized under physio-
logical conditions, and this non-invasive in vivo BLI
method will facilitate further investigation of the roles
of BDNF in neurological disease. In addition, this re-
port provides instructive information for the in vivo
use of TokeOni with other Luc mice line.

Methods

Animals

All animal care procedures and experiments were ap-
proved by the Animal Experiment Committee of the
University of Toyama (Authorization No. S-2010 MED-
51, A2011PHA-18, and A2014PHA-1) and Takasaki
University of Health and Welfare (Authorization No.
1733, 1809, 1913, and 2008), and were performed in ac-
cordance with the Guidelines for the Care and Use of
Laboratory Animals of the University of Toyama and
Takasaki University of Health and Welfare. Mice were
housed under standard laboratory conditions (12h-12
h/light-dark cycle at 22 +2°C) and had free access to
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food and water. The generation of Bdnf-Luc mice has
been described previously [15, 16] and 8-14 week-old
Bdnf-Luc mice were used.

In vivo BLI

One day before in vivo BLI, the black fur was shaved from
the top of the head of Bdnf-Luc mice under inhalation
anesthesia with 2.0% isoflurane. D-luciferin (Promega,
Madison, W1, USA), TokeOni, and seMpai were dissolved
in saline at the concentration of 10 mg/ml. Bdnf-Luc mice
were anesthetized by inhalation of 2.0% isoflurane, and
then Luc substrate solution was administered intraperito-
neally [0.1 ml substrate solution/10 g body weight (dose of
each substrate: 100 mg/kg)]. In our previous report,
TokeOni was used at 150 mg/kg or 75 mg/kg, and the sig-
nals from the brain region were successfully detected [16].
Therefore, in the current study, we determined the dose
of TokeOni at 100 mg/kg. To compare the biolumines-
cence signals in the same conditions, the dose of the other
substrates was also determined at 100 mg/kg. Five minutes
after substrate administration, BLI was performed using
an IVIS in vivo imaging system [PerkinElmer, Boston,
MA, USA (Exposure time: 2 min, Binning: Medium, F/
Stop: 1)]. Pseudocolored bioluminescent images repre-
senting the spatial distribution of emitted photons were
overlaid on photographs of the mouse taken in the cham-
ber. The results shown in Supplementary Figure 2 were
generated by in vivo BLI performed according to our pre-
vious report [16].

KA administration and analysis of endogenous BDNF
expression

Kainic acid [KA (Sigma-Aldrich, St. Louis, MO, USA)]
was dissolved in saline at 2.5 mg/ml. Saline or KA solu-
tion was administered intraperitoneally to Bdnf-Luc mice
[0.1 ml substrate solution/10 g body weight (dose of KA:
25 mg/kg)]. Six hours after the administration of saline
or KA, in vivo BLI was performed using TokeOni. After
BLI, the mice were decapitated while still anesthetized
and cerebral cortex and hippocampus were isolated to
examine changes in endogenous Bdnf mRNA and BDNF
protein levels.

Total RNA was purified from the cerebral cortex and
hippocampus using ISOGEN (Nippongene, Tokyo,
Japan), according to the manufacturer’s instructions.
One microgram of purified total RNA was reverse-
transcribed into ¢cDNA using a PrimeScript 1st Strand
c¢DNA Synthesis Kit (TaKaRa Bio, Kusatsu, Japan), ac-
cording to the manufacturer’s instructions. Real-time
PCR was performed using SYBR Select Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA), accord-
ing to the manufacturer’s instructions. Fold-change
values were calculated by the “*Ct method to determine
relative gene expression. Primer sequences of Bdnf and
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Gapdh were as described previously [16]. The levels of
Bdnf mRNA were normalized to those of Gapdh mRNA.

Protein extraction was performed using T-PER Protein
Extraction Reagent (Thermo Fisher Scientific) supple-
mented with Halt Protease Inhibitor Cocktail (Thermo
Fisher Scientific), according to the manufacturer’s in-
structions. Protein concentrations were determined
using a BCA Protein Assay Kit (Thermo Fisher Scien-
tific). After heat denaturation of samples in Laemmli
Sample Buffer (BioRad, Hercules, CA, USA) supple-
mented with 2-mercaptoethanol, 10 pug of protein was
separated by SDS-PAGE (for BDNF: 15% polyacrylamide
gel, for a-Tubulin: 10% polyacrylamide gel). Separated
proteins were transferred to a PVDF membrane. The
membrane was washed, blocked with 5% skimmed milk,
and then treated with a primary antibody {anti-BDNF
antibody [Abcam, Cambridge, UK (ab108319, 1:1000)]
or anti-a-Tubulin antibody [Wako, Osaka, Japan (1:
1000)]} diluted in Can Get Signal Solution 1 (TOYOBO,
Osaka, Japan) overnight at 4 °C with shaking. The mem-
brane was washed, treated with a secondary antibody
{anti-rabbit IgG HRP-conjugated [GE Healthcare, Buck-
inghamshire, England (1:5000)] or anti-mouse IgG HRP-
conjugated [GE Healthcare, (1:5000)]} diluted in Can
Get Signal Solution 2 (TOYOBO) for 1h at room
temperature with shaking, and then washed. Each band
was detected using ImmunoStar Zeta (Wako). Intensity
of each band was measured using Image J. The levels of
BDNF were normalized to those of a-Tubulin.

Sensory stimulation

The black fur was shaved from the top of the head of
Bdnf-Luc mice under inhalation anesthesia with 2.0%
isoflurane, and then the mice were housed in the dark
for 6.5days. We then performed in vivo BLI using
TokeOni without lighting. After BLI, the mice were
housed in the dark for a further 2days, and then the
mice were exposed to light for 1 h. After light exposure,
the mice were housed in the dark for 5h, and then
in vivo BLI was performed again. Region of interest
(ROI) analysis was performed according to previous re-
ports [30, 31] with modifications. Briefly, the region of
the cerebral cortex was estimated by the biolumines-
cence signal image (Supplementary Fig. 3a, the region
surrounded by a red line), and the region was covered
with 16 x 24 ROIs (Supplementary Fig. 3a, 16 x 24 boxes
shown in white line). ROIs containing visual cortex (ROI
V1 and V2) or somatosensory cortex (ROI S1 and S2)
were estimated by mouse brain atlas.

Statistics

All data are presented as the mean + the standard error
of the mean (SEM). Statistical analyses were performed
using Prism 7 software (GraphPad). Detailed information
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regarding statistical analysis of each result is shown in
each figure legend.

Results

Detection of bioluminescence signals from the living
Bdnf-Luc mouse brain

We first tried to identify a suitable substrate of firefly
Luc to enable visualization of changes in Bdnf expres-
sion in living Bdnf-Luc mouse brains using non-
invasive in vivo BLL. We used p-luciferin, TokeOni,
and seMpai, as Luc substrates (Fig. 1a). TokeOni and
seMpai are synthetic luciferins and produce near-
infrared light [27, 28, 32]. TokeOni barely dissolves in
a neutral pH buffer; a solution with an acidic pH is
required, which may be unsuitable for certain experi-
ments. In contrast, seMpai can be dissolved in neutral
pH solvents.
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To compare the detection of bioluminescence signals
produced by each substrate, we administered each sub-
strate to Bdnf-Luc mice under inhalation anesthesia and
then measured bioluminescence signals (Fig. 1b). En-
dogenous BDNF is highly abundant in the brain; there-
fore, strong bioluminescence signals were expected from
the brain. However, we could not identify the region of
cerebral cortex after intraperitoneal injection of p-lucif-
erin (Fig. 1c). On the other hand, we detected signals
from the brain after intracerebroventricular injection of
D-luciferin (Supplementary Fig. 1). The signal intensity
from the head region obtained using seMpai as a Luc
substrate was lower compared with that obtained using
D-luciferin (Fig. 1c). In contrast, we clearly detected sig-
nals from brain regions, probable the region of cerebral
cortex in particular, after injection of TokeOni (Fig. 1c).
Both ROI analysis (Fig. 1d) and line profiles (Fig. 1le)
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Fig. 1 Comparison of luciferase substrates for in vivo BLI using Bdnf-Luc mice. a. Structure of p-luciferin, seMpai, and TokeOni. b. Schedule of
experiments. p-luciferin, seMpai, and TokeOni were administered intraperitoneally to Bdnf-Luc mice, and in vivo BLI was performed 5 min after
each administration. Each substrate was injected into mice with at least 2 d intervals. c. Representative images of in vivo BLI using p-luciferin,
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seMpai, or TokeOni as a luciferase substrate. Bioluminescence; counts indicated by pseudocolored images. Photo; photographs corresponding to
bioluminescence images. d. ROl analysis. Data represent the mean + SEM of four independent experiments using one-way ANOVA with Tukey's
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showed that higher signal intensities from brain regions
were detected using TokeOni compared with using p-lu-
ciferin and seMpai. Furthermore, in previous experi-
ments we removed the skin to expose the skull before
in vivo BLI [16]; however, bioluminescence signals were
clearly detected from the brain of Bdnf-Luc mice using
TokeOni (Fig. 1c—e), indicating that it is not necessary
to expose the skull before in vivo BLI. Thus, TokeOni
was the most suitable substrate tested for the non-
invasive visualization of BDNF expression levels in the
living Bdnf-Luc mouse brain.

Visualization of kainic acid-induced Bdnf expression in
living mouse hippocampus

In our previous study, we successfully visualized the in-
duction of Bdnf expression after intracerebroventricular
injection of pituitary adenylate cyclase-activating poly-
peptide [16], which increases Bdnf expression in the
cerebral cortex [15]. In this study, we examined whether
the induction of Bdnf expression could be visualized
non-invasively in Bdnf-Luc mice by in vivo BLI using
TokeOni. Kainic acid (KA) increases Bdnf expression in
the rodent brain [33, 34]; however, we could not detect
significant changes in bioluminescence signals after KA
administration to Bdnf-Luc mice when we use D-lucif-
erin as a Luc substrate (Supplementary Fig. 2). Here, we
administered saline or KA to Bdnf-Luc mice and then
measured bioluminescence signals using TokeOni as a
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Luc substrate. Compared with signals from saline-
administered mice, the signals from the brain were
clearly increased after KA administration (Fig. 2a). ROI
analysis revealed that the signals from the brain were
significantly increased by KA administration (Fig. 2b). In
addition, the signals seemed to be strongly increased in
the hippocampus (Fig. 2a). To confirm this, we investi-
gated the expression levels of endogenous BDNF in the
hippocampus and cerebral cortex after in vivo BLI. Both
Bdnf mRNA (Fig. 2c) and BDNF protein (Fig. 2d, e)
levels were significantly increased by KA administration
in the hippocampus but not in the cerebral cortex of
Bdnf-Luc mice. These results strongly indicated that
changes in endogenous Bdnf expression could be visual-
ized in the living Bdnf-Luc mouse brain by in vivo BLI
with TokeOni.

Limitation of using TokeOni for repeated in vivo BLI

One of the advantages of non-invasive BLI to evaluate
changes in target gene expression is repeated measure-
ments in the same individual. However, it is necessary to
administer a Luc substrate at each measurement. There-
fore, we next examined whether TokeOni could be re-
peatedly administered to Bdnf-Luc mice. Five minutes
after the administration of p-luciferin to mice, we could
detect bioluminescence signals (Fig. 3a, b). The signals
were barely detectable 6h after the administration but
could be detected again by re-administration of D-

a C e
; 12, x [l ; Saline 4.0, M ; Saline
Saline 5 < - £ -
. 2 10 ; KA g . ; KA
* % = & - 30
b 8 1 T8
52 z2
—~ 3.0 [V [=
% 2% © e9 2
55 x °3 39 NS
= oW 4] Su
5.0 2,0 S~ o 1.01
c = o
- 3 3 21 o
) Q w c
240 2 w
— =
) 8 0 0
= 50 L 104 g Hp Cx Hp Cx
2
5 ] - T - 15
3 BDNF !’\ = e -
O 20 - 7 2 - A -10
- - g -75
0 - ) Q-Tubu lin -~ — L ] e ———— ]
1.0 Saline KA L -- -?IZDa)
Saline KA Saline KA
Hp Cx
Fig. 2 Visualization of KA-induced Bdnf expression. a. Representative images of in vivo BLI 6 h after administration of saline or KA. b. ROI analysis.
Data represent the mean + SEM of three independent experiments using the unpaired t test (*p < 0.05). . RT-PCR analysis. After in vivo BLI, total
RNA was prepared from the hippocampus (Hp) and cerebral cortex (Cx) of Bdnf-Luc mice to examine changes in endogenous Bdnf mRNA levels.
Data represent the mean + SEM of three independent experiments using the unpaired t test (*p < 0.05, NS; not significant). d. Immunoblot
analysis. After in vivo BLI, proteins were extracted from the hippocampus and cerebral cortex of Bdnf-Luc mice to examine changes in
endogenous BDNF protein levels. e. The intensities of bands shown in Fig. 2d were quantified using Image J. Data represent the mean + SEM of
three independent experiments using the unpaired t test (**p < 0.01, NS; not significant)
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experiments using one-way ANOVA with Tukey's multiple comparisons test (****p < 0.0001, NS; not significant)

luciferin (Fig. 3a, b). The signal intensity after the second
injection was almost the same as the intensity after the
first injection (Fig. 3b), indicating that D-luciferin can be
repeatedly used for in vivo BLI. Compared with signals
detected 5min after the administration of TokeOni to
mice, the signal strength was decreased but still detect-
able 6 h after the administration (Fig. 3a, c¢). However,
the signal intensity after the second injection was signifi-
cantly lower than the intensity after the first injection
(Fig. 3c). To examine this response further, we adminis-
tered TokeOni to Bdnf-Luc mice once and then per-
formed in vivo BLI at 0, 3, 6, 9, 12, and 24 h after the

administration (Fig. 3d). Compared to signals at Oh, the
signals were reduced but detectable 3 h after the admin-
istration (Fig. 3e, f). The signals were still detectable at
12h, but very weak at 24h after the administration
(Fig. 3e, f). Twenty-four hours after the first injection,
we re-administered TokeOni to the mice and could de-
tect signals at comparable levels to those after the first
injection (Fig. 3e, f). Thus, although TokeOni is a benefi-
cial substrate for detecting bioluminescence signals from
living mouse brains non-invasively, the substrate should
be administered to mice at appropriate intervals, such as
once a day.
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Visualization of sensory-driven Bdnf expression in the
living mouse visual cortex

We next tried to visualize the induction of Bdnf expres-
sion in the living Bdnf-Luc mouse brain under physio-
logical conditions. Light exposure increases BDNF
expression in the visual cortex [35, 36]. We, therefore,
housed Bdnf-Luc mice in the dark for 6.5 days and then
performed BLI [Fig. 4a, Light (-)]. After BLI, the mice
were again housed in the dark. Two days after the first
BLI, the mice were exposed to light for 1 h, housed in the
dark for 5 h, and BLI signals measured again [Fig. 4a, Light
(+)]. Compared with the signals from the brain of Bdnf-
Luc mice housed in the dark, light exposure for 1h in-
creased the signal intensity (Fig. 4b). The signals were
likely to be higher in the visual cortex; therefore, we per-
formed ROI analysis (Supplementary Fig. 3). The signals
in ROI V1 and V2, the region containing the visual cortex,
were significantly increased after light exposure (Fig. 4c).
In contrast, the signals in ROI S1 and S2, the region con-
taining the somatosensory cortex, did not change in re-
sponse to light (Fig. 4c). Thus, we successfully visualized
the induction of Bdnf expression in the visual cortex of
living Bdnf-Luc mice in response to sensory stimulation.
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Discussion

We previously generated a transgenic mouse strain,
Bdnf-Luc, to visualize changes in Bdnf expression in liv-
ing cells and mice [15, 16]. However, D-luciferin was not
suitable for visualizing changes in Bdnf expression in the
living mouse brain. One of the problems regarding the
detection of bioluminescence signals produced by p-lu-
ciferin in Bdnf-Luc mouse brain was the poor ability of
the substrate to cross the BBB [20, 21]. The ability of p-
luciferin to cross the BBB may be limited by ACBG2
[22]. This is also supported the detection of signals from
the brain when p-luciferin was injected directly into the
brain ventricles of Bdnf-Luc mice. Furthermore, the sig-
nals obtained from the head region using seMpai were
lower than those produced by bp-luciferin, suggesting
that seMpai may be less able to cross the BBB compared
with D-luciferin. The signals produced by D-luciferin, as
well as seMpai, were also detected in the regions without
black fur. These signals were probably derived from sur-
face tissues such as skin, as previously reported [16]. We
confirmed that endogenous Bdnf mRNA was expressed
in the skin of the head region [16]. However, the signals
were strongly detected in the base of the ears in

paired t test (*p < 0.05, NS; not significant)
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Fig. 4 Visualization of sensory stimulation-induced Bdnf expression. a. Schedule of experiments (also refer to the Materials and methods). b.
Representative images of in vivo BLI. In vivo BLI was performed 6.5 d after houseing Bdnf-Luc mice in the dark [Light (=)]. The mice were housed
in the dark for an additional 2 d, and were then exposed to light for 1 h. After light exposure for 1 h, the mice were again housed in the dark for
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somatosensory cortex (also refer to Supplementary Fig. 3 in detail). Data represent the mean + SEM of four independent experiments using the
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particular, when we injected p-luciferin to the mice. Fur-
ther investigations are necessary to identify the bio-
luminescence signals from peripheral tissues. A hairless
mouse strain [31] would help us further examine periph-
eral Bdnf expression by in vivo BLL In contrast,
TokeOni produced signals in the brain, reflecting the
high expression levels of endogenous BDNF in the brain.

The other problem of bioluminescence tissue penetra-
tion was also solved by using TokeOni, because it pro-
duces near-infrared bioluminescence. In our previous
study, we removed the skin from the top of the skull of
Bdnf-Luc mice before in vivo BLI, even if TokeOni was
used [16]. However, in this study, we found that the sig-
nals were detectable after crossing the skull and skin. In
addition, our current results regarding KA-induced Bdnf
expression demonstrated that the signals in the hippo-
campus could be detected. Because previous reports sug-
gest that KA disrupts the BBB [37], it might be possible
that KA-induced increase in the bioluminescence signals
is due to the BBB dysfunction. If so, the KA-induced sig-
nals would be also observed using p-luciferin. However,
we could not observe the significant changes in the sig-
nals after KA administration when we used p-luciferin
as a substrate for Luc. On the other hand, it has been
shown that the signals obtained by TokeOni have also
been detected from the striatum [29]. Thus, we suggest
that TokeOni will enable non-invasive in vivo BLI and
also bioluminescence signals from deeper brain regions
to be detected. In the previous report, bioluminescence
signals were successfully detected in freely moving ani-
mals using AkaBLI [29]. Therefore, it would be possible
to visualize changes in Bdnf expression, if the firefly Luc
in Bdnf-Luc mice is replaced by Akaluc, which is an op-
timized firefly Luc for TokeOni.

Our current results may reflect differences in the
pharmacokinetics of p-luciferin and TokeOni in mice.
The in vitro Km value of TokeOni is lower than that of
D-Luciferin [28], suggesting that the affinity of TokeOni
to Luc is higher than that of p-luciferin, which would re-
sult in the long-lasting detection of signals produced by
TokeOni in vivo. Furthermore, the second signals were
significantly reduced when TokeOni was administered
to Bdnf-Luc mice at 6 h intervals. This reduction is prob-
ably caused by product inhibition [38, 39]; enzymatic re-
action products of TokeOni may inhibit the Luc-
TokeOni enzymatic reaction. In any case, the first and
second signal intensities were comparable when
TokeOni was administered to mice at 24 h intervals.
Therefore, an appropriate interval of administration
should be examined before TokeOni is applied to each
Luc mouse line. In addition, we previously reported that
luciferase activity was stably detected in primary neur-
onal cells prepared from Bdnf-Luc mice after pharmaco-
logical inhibition of de novo transcription, despite Luc
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and endogenous Bdnf mRNA levels being similarly de-
creased under the same conditions [40]. Therefore, it
should be noted that rapid decreases in Bduf expression
and oscillatory changes in Bdnf expression are difficult
to visualize by in vivo BLI using Bdnf-Luc mice.

A number of reports show lower BDNF levels in brains
with neurological diseases [2—4, 10, 11]. Non-invasive
near-infrared in vivo BLI using Bdnf-Luc mice and
TokeOni will allow changes in Bdnf expression in the
brain under physiological and pathophysiological condi-
tions to be examined. Therefore, this method will facilitate
further understanding of the relationship between alter-
ations in BDNF levels in the brain and pathophysiology of
neurological diseases, assuming that disease model mice
can be generated using Bdnf-Luc mice. In addition, near-
infrared BLI enable the detection of bioluminescence from
deep tissue regions, including those of the brain. TokeOni
is now commercially available; therefore, our findings also
provide instructive information for the application of this
substrate to other Luc mouse line.
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