
Miyata et al. Mol Brain            (2021) 14:5  
https://doi.org/10.1186/s13041-020-00713-2

RESEARCH

Global knockdown of glutamate 
decarboxylase 67 elicits emotional abnormality 
in mice
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Abstract 

Reduced expression of glutamate decarboxylase 67 (GAD67), encoded by the Gad1 gene, is a consistent finding in 
postmortem brains of patients with several psychiatric disorders, including schizophrenia, bipolar disorder and major 
depressive disorder. The dysfunction of GAD67 in the brain is implicated in the pathophysiology of these psychiatric 
disorders; however, the neurobiological consequences of GAD67 dysfunction in mature brains are not fully under-
stood because the homozygous Gad1 knockout is lethal in newborn mice. We hypothesized that the tetracycline-
controlled gene expression/suppression system could be applied to develop global GAD67 knockdown mice that 
would survive into adulthood. In addition, GAD67 knockdown mice would provide new insights into the neurobio-
logical impact of GAD67 dysfunction. Here, we developed Gad1tTA/STOP−tetO biallelic knock-in mice using Gad1STOP−tetO 
and Gad1tTA knock-in mice, and compared them with Gad1+/+ mice. The expression level of GAD67 protein in brains 
of Gad1tTA/STOP−tetO mice treated with doxycycline (Dox) was decreased by approximately 90%. The GABA content was 
also decreased in the brains of Dox-treated Gad1tTA/STOP−tetO mice. In the open-field test, Dox-treated Gad1tTA/STOP−tetO 
mice exhibited hyper-locomotor activity and decreased duration spent in the center region. In addition, acoustic 
startle responses were impaired in Dox-treated Gad1tTA/STOP−tetO mice. These results suggest that global reduction in 
GAD67 elicits emotional abnormalities in mice. These GAD67 knockdown mice will be useful for elucidating the neu-
robiological mechanisms of emotional abnormalities, such as anxiety symptoms associated with psychiatric disorders.
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Introduction
γ-Aminobutyric acid (GABA), a major inhibitory neu-
rotransmitter, regulates a variety of biological func-
tions. GABA is synthesized from glutamate by glutamate 
decarboxylase (GAD) existing two isoforms with dif-
ferent molecular weights, 67  kDa (GAD67) and 65  kDa 
(GAD65), which are independently encoded by the Gad1 

and Gad2 genes, respectively [1, 2]. Since GAD67 and 
GAD65 proteins have different subcellular distributions 
and a cofactor association [3–6], the physiological roles 
of GAD67 and GAD65 may be different in the brain.

Decreased expression of the full-length GAD1 tran-
script and GAD67 protein is one of the most consistent 
findings in the brains of subjects with several psychiat-
ric disorders, including schizophrenia, bipolar disorder 
and major depressive disorder [7–12]. Alternative splic-
ing of GAD1 and the epigenetic state may play roles in 
brain development and the risk of schizophrenia [12]. 
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Recent studies with whole exome sequencing of schiz-
ophrenic patients identified missense mutation map-
ping at the GAD1 gene, which caused a reduction in 
GAD67 enzymatic activity by ~ 30% due to impaired 
homodimerization [13, 14]. Therefore, the functional 
impairment of GAD67 associated with genetic muta-
tions is involved in the neurobiological mechanisms of 
several psychiatric disorders. To elucidate the physi-
ological roles of GAD67 in mature brains, a study using 
transgenic animals with reduced GAD67 expression 
would be helpful. Because homozygous Gad1 knockout 
(Gad1−/−) is lethal in newborn mice [15], conditional 
Gad1−/− mice generated with a Cre-loxP strategy have 
often been used for neurobiological studies [16–20]. 
These studies have provided much information about 
the function of GAD67 in targeted cells. However, 
behavioral and neurochemical consequences of the 
global dysfunction of GAD67 in mature brains are not 
fully understood. Several studies have been performed 
to investigate GAD67 function using mice with GAD67 
haplodeficiency; however, physiological changes, such 
as GABA reduction in the brain and behavioral abnor-
malities, were mild in those mice [15, 21–24].

The tetracycline-controlled gene expression/suppres-
sion system allows reduction in a gene of interest by 
administration of antibiotic tetracyclines and its deriva-
tive doxycycline (Dox) [25]. This system requires two 
distinct transgenic mice: one has a cell type-specific 
promoter driving a tetracycline-controlled transcrip-
tional activator (tTA)-expressing allele, and the other 
has a tetracycline operator site (tetO) binding to tTA 
and driving the expression of the gene of interest. By 
crossing them, a biallelic knock-in mouse (tTA/tetO) 
can be obtained with a tTA-mediated gene induction 
system, which can be turned off by the administration 
of Dox.

We hypothesized that the tetracycline-controlled 
gene expression/suppression system could be applied 
to generate transgenic mice able to postnatally knock-
down GAD67. In brief, two knock-in mice were gen-
erated: (1) Gad1STOP−tetO knock-in mice, which were 
generated by inserting the tetO sequence following 
the STOP sequence upstream of the Gad1 translation 
initiation site (Fig. 1a), and (2) Gad1tTA knock-in mice 
[26], which express tTA proteins under the control of 
an endogenous Gad1 promoter (Fig. 1b). The Gad1tTA/

STOP−tetO mice can produce GAD67 protein (Fig.  1c) 
and survive into adulthood. In addition, the expres-
sion of GAD67 protein in the Gad1tTA/STOP−tetO mice 
is suppressed by treatment with Dox (Fig.  1d). There-
fore, Dox-treated Gad1tTA/STOP−tetO mice can be used 
as GAD67 knockdown mice for studying the behavioral 

and neurochemical consequences of the global loss of 
GAD67 in mature brains.

The major aim of this study was to examine the phe-
notypes of mice with GAD67 suppression at adult stage. 
In this study, we successfully developed Gad1STOP−tetO 
knock-in mice and the subsequent Gad1tTA/STOP−tetO 
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Fig. 1  Doxycycline (Dox)-regulated Gad1 suppression system. a 
Generation of Gad1STOP−tetO knock-in mice. Schematic diagram 
depicting Gad1 genomic DNA (Gad1+), targeting vector, and Gad1 
genomic DNA inserted into the Neo-STOP-tetO cassette (Gad1STOP−

tetO). Arrows indicate the PCR primers (Primer set 1). b Schematic 
representation of Gad1 genomic DNA (Gad1+) and DNA containing 
the tetracycline-controlled transactivator (tTA) gene (Gad1tTA). Arrows 
indicate the PCR primers (Primer set 2). c, d Schematic diagram of the 
Dox-regulated Gad1 suppression system in Gad1tTA/STOP−tetO mice. 
Before Dox treatment, tTA binds to the tetracycline operator site 
(tetO) and promotes Gad1 transcription and GAD67 production (c). 
Dox treatment interferes with tTA binding to tetO and suppresses 
Gad1 transcription (d). e, f PCR genotyping. Representative results of 
PCR genotyping for Gad1tTA/STOP−tetO mice (e), Gad1STOP−tetO/STOP−tetO 
mice (f) and their littermates. M; 100-bp size marker, +/+; Gad1+/+, 
tTA/tet; Gad1tTA/STOP−tetO, tTA/ + ; Gad1tTA/+, tet/ + ; Gad1STOP−tetO/+, 
tet/tet; Gad1STOP−tetO/STOP−tetO
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mice. Herein, we report the behavioral abnormalities 
elicited by the global knockdown of GAD67 in mice.

Methods
Ethics
This study was performed in accordance with the Guide-
lines for Animal Experimentation at Gunma University 
Graduate School of Medicine and was approved by the 
Gunma University Ethics Committee (Permit number: 
14-006 and 19-009). Every effort was made to minimize 
the number of animals used and their suffering.

Experimental design
We first generated Gad1STOP−tetO knock-in mice and 
assessed the Gad1 knockout phenotypes (GAD67 dele-
tion, neonatal death and cleft palate) of homozygous 
Gad1STOP−tetO/STOP−tetO mice to confirm the elimina-
tion of Gad1 gene function by inserting the Neo-STOP-
tetO cassette. We then crossed heterozygous Gad1tTA/+ 
and Gad1STOP−tetO/+ mice to obtain Gad1tTA/STOP−tetO 
mice and confirmed tTA-mediated GAD67 expression. 
Afterward, we evaluated whether tTA-mediated GAD67 
expression was suppressed by treatment with Dox. It has 
been reported that GAD67 haplodeficient mice demon-
strate an approximately 40% reduction in GAD67 protein 
in the brain compared with wild-type mice [27]. There-
fore, we judged that GAD67 knockdown mice were suc-
cessfully developed when the expression level of GAD67 
protein in the brain was reduced by more than 40%. 
These experiments were performed in mice of both sexes.

In the behavioral tests, male mice were only used. We 
prepared two independent cohorts comparing Gad1+/+ 
mice and Gad1tTA/STOP−tetO mice at the ages of 8 to 
10  weeks. One cohort was used for assessing the body 
weights, motor coordination performance, and GABA 
and glutamate contents in their brains. The body weights 
and motor coordination performance of the mice were 
measured 3  weeks after starting Dox treatment. Imme-
diately after the motor coordination test, the mice were 
killed by decapitation, and the frontal cortex (FCX), hip-
pocampus (HIP) and cerebellum (CER) were quickly dis-
sected. The collected tissues were immediately frozen in 
liquid nitrogen and stored at − 80 °C until use. The frozen 
tissues were used for measuring GABA and glutamate 
contents. Another cohort was used for the open-field test 
and PPI test. Three weeks after treatment with Dox, the 
open-field test was conducted. After testing, the mice 
were returned to their home cage, and treatment with 
Dox was continued. Two days after the open-field test, 
the acoustic startle responses and prepulse inhibition 
(PPI) responses were assessed in the mice.

Animals
To generate Gad1STOP−tetO knock-in mice, we con-
structed the Gad1 targeting vector by linking the follow-
ing elements in tandem: the 4.7-kb 5′-homology arm, 
3.4-kb Neo-STOP-tetO cassette [28], 5.9-kb 3′-homology 
arm, and the MC1 promoter-driven diphtheria toxin A 
subunit gene (DT) (Fig.  1a). The Neo-STOP-tetO cas-
sette comprised the 1.7-kb PGK-Neo cassette, a 1.3-kb 
STOP sequence, and a 0.5-kb tetO site. The targeting vec-
tor was designed to insert the Neo-STOP-tetO cassette 
just upstream of the Gad1 translation initiation site. We 
used B6-derived embryonic cells for homologous recom-
bination. From 179 G418-resistant clones, we obtained 
46 recombinant clones. Germline-transmitted off-
spring were established as Gad1STOP−tetO knock-in mice 
(Fig. 1a).

The generation of Gad1tTA knock-in mice has already 
been described [26]. In these mice, the tTA2 cDNA fol-
lowed by the SV40 polyadenylation signal was inserted 
into exon 1 of the Gad1 gene in frame with the transla-
tion initiation codon, and the tTA protein was expressed 
under the control of an endogenous Gad1 promoter 
(Fig. 1b).

Heterozygous mice carrying one STOP-tetO allele 
(Gad1STOP−tetO/+ mice) were crossed with heterozygous 
mice carrying one tTA allele (Gad1tTA/+ mice) to obtain 
four genotypes: Gad1+/+, Gad1tTA/+, Gad1STOP−tetO/+ 
and Gad1tTA/STOP−tetO mice. To prevent the expression of 
GAD67 protein, we administered 100 mg of Dox per kg 
of regular mouse chow CE-2 (CLEA Japan, Inc.).

The animals were housed at 2–3 mice per cage 
(16.5 × 27 × 12.5 (H) cm) and had free access to food and 
water. The animal rooms for breeding and experiments 
were maintained at 22 ± 3 °C with a 12-h light–dark cycle 
(lights on at 6:00, lights off at 18:00).

Genotyping
Genotyping of the transgenic mice was performed by 
PCR using tail genomic DNA with SapphireAmp Fast 
PCR master mix (Takara Bio Inc., Japan) and the specific 
primer sets. Primer set 1 determined the existence of the 
Neo allele (Fig.  1a); the sequences were Neo-F, 5′-CAG​
CTG​TGC​TCG​ACG​TTG​TC-3′ and Neo-R, 5′-AAG​ACC​
GGC​TTC​CAT​CCG​AG-3′. Primer set 2 determined the 
existence of the Gad1 and tTA-inserted Gad1 alleles 
(Fig.  1b); the sequences were Gad1-F, 5′-TGG​TCT​CCC​
TTC​TGT​CTC​CGA-3′, Gad1-R, 5′-TGT​AGG​GCG​CAG​
GTT​GGT​AG-3′, and tTA-R, 5′-GGG​CAA​AAG​TGA​
GTA​TGG​TGCC-3′. After amplification, 5 μL of each 
reaction mixture and a size marker (Loading Quick 
100  bp DNA Ladder, TOYOBO Co. Ltd, Osaka, Japan) 
were analyzed by 2% agarose gel electrophoresis, and the 
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bands were then visualized by ethidium bromide stain-
ing. The lengths of the amplified DNA fragments were 
224 bp (Neo allele), 229 bp (Gad1 allele) and 357 bp (tTA-
inserted Gad1 allele) (Fig. 1e, f ).

Palate formation
Mouse neonates were killed by decapitation, and the 
lower jaw was removed. The cleft palate of the mouse was 
determined under a stereoscopic microscope.

Immunoblot analysis
The mice were killed by decapitation. The brain hemi-
spheres of neonates and the FCX, HIP and CER of adult 
mice were quickly dissected on an ice-cold stainless plate. 
The tissues were immediately frozen in liquid nitrogen 
and stored at − 80  °C until use. The frozen tissues were 
homogenized in ice-cold buffered sucrose (0.32 M) solu-
tion containing 20 mM Tris–HCl (pH 7.5) and protease 
inhibitor cocktail (P8340, Sigma-Aldrich, Inc.). The 
homogenates were centrifuged at 1000×g for 10  min at 
4 °C, and the supernatants were collected as the protein 
samples. The protein concentrations were determined 
using a TaKaRa BCA Protein Assay Kit (T9300A, Takara 
Bio Inc., Japan).

The protein samples were diluted with electrophore-
sis sample buffer. Proteins (1.5  μg) were separated by 
8% SDS-polyacrylamide gels and transferred to a PVDF 
membrane. Blots were probed with respective antibod-
ies to GAD65/67 (1:1000, rabbit polyclonal antibody) 
[29] and GAD67 (1:1000, mouse monoclonal anti-
body, Millipore, Code No. MAB5406). Immunoblots 
were developed using horseradish peroxidase-conju-
gated secondary antibodies (GE Healthcare) and then 
detected with chemiluminescence reagents (ECL prime, 
GE Healthcare) and visualized by the Light Capture 
AE-9672 (ATTO Co., Ltd.). After the detection of immu-
noblots, the blotting membranes were washed with PBS 
several times and reprobed with a mouse monoclonal 
antibody to β-actin (1:10,000, Medical & Biological Labo-
ratories Co. Ltd., Code No. M177-3). The immunoblots 
of β-actin were developed and visualized by the same 
protocol described above. The density of the bands was 
determined using ImageJ software. The band densities 
of β-actin were used as the loading control. The relative 
expression level of GAD67 to β-actin was calculated and 
used for comparisons between the genotypes.

Double‑label immunofluorescence analysis
Deeply anesthetized mice by continuous inhalation of 
isoflurane were fixed by perfusion with Mildform 10  N 
(containing 3.7–4.3 w/w% formaldehyde; FUJIFILM 
Wako Pure Chemical Co., Osaka, Japan) through the 
left ventricle. The brain was removed and postfixed in 

Mildform 10 N overnight at 4 °C. The brain hemispheres 
were cut into 50-μm-thick sagittal sections by a vibrating 
blade tissue slicer (Neo-LinearSlicer MT, Dosaka EM Co., 
Ltd., Kyoto, Japan).

Free-floating immunostaining was performed by using 
a VECTOR M.O.M.® (Mouse on Mouse) Immunodetec-
tion Kit (BMK-2202, Vector Laboratories Inc., USA). The 
sections were incubated overnight at room temperature 
in the 1st primary antibodies against GAD67 (1:300, 
mouse monoclonal antibody, MAB5406, Millipore) and 
parvalbumin (PV) (1:300, guinea pig polyclonal antibody, 
PV-GP-Af1000, Frontier Institute Co. Ltd., Hokkaido, 
Japan) with the M.O.M. Blocking reagent after preincu-
bation with 0.3% Triton X-100 in PBS. After rinsing, the 
sections were incubated in the M.O.M. Biothinylated 
Anti-Mouse IgG Reagent (1:300) with a secondary anti-
body (1:300, goat anti-guinea pig IgG conjugated with 
AlexaFluor488, A-11073, Invitrogen) for 30 min at room 
temperature. After rinsing, the sections were incubated 
in a solution containing Streptavidin-DyLight649 (1:50, 
SA-5649, Vector Lab.) and DAPI (1:500, D523, Dojindo 
Laboratories, Japan) for 30  min at room temperature. 
The stained sections were mounted on MAS-coated glass 
slides (Matsunami Glass Ind., Ltd., Osaka, Japan) with 
Fluoromount (K024, Diagnostic BioSystems, USA). Fluo-
rescence images were captured with a fluorescence digi-
tal microscope (BZ-X810, Keyence, Osaka, Japan).

Three independent mice in the respective groups were 
assessed. The names of brain regions were referenced to 
the Allen Mouse Brain Atlas (https​://allen​insti​tute.org/).

Motor coordination test
The performance of motor coordination in mice was 
tested by a rotarod apparatus (Ugo Basile, Comerio, Italy) 
according to a previous report [16]. Briefly, each mouse 
was placed in a separate lane of the apparatus on a rotat-
ing cylinder (3  cm diameter) at 20 rounds per minute. 
The latency until the mouse fell from the cylinder (up 
to 120  s) was recorded in three consecutive trials with 
2–3 min intervals, and the median latency was used for 
the following analysis. If the mouse did not fall within 
120 s, the latency to fall was recorded as 120 s.

Open‑field test
Each mouse was placed in the center of an open-field 
apparatus (50  cm × 50  cm × 40 (H) cm) that was illu-
minated by light-emitting diodes (30  lx at the center of 
the field) and allowed to move freely for 5 min. The data 
were collected and analyzed using ImageJ OF4 (O’Hara 
& Co., Ltd., Tokyo, Japan), which is modified software 
that is also based on the public domain ImageJ program. 
The procedure was performed according to our previous 
report [30].

https://alleninstitute.org/
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Acoustic startle response and PPI test
An acoustic startle reflex measurement system (O’Hara 
& Co., Ltd., Tokyo, Japan) was used. The startle response 
was assessed with various stimulus intensities. Five times 
of 70 to 120  dB (70, 75, 80, 85, 90, 95, 100, 110, and 
120  dB) white noise stimuli (40  ms) were presented in 
quasi-random order and random intertrial intervals (10–
20 s). In the PPI session, mice experienced five trial types: 
no stimulus; startle stimulus (120  dB, 40  ms) only; pre-
pulse 70 dB (20 ms, lead time 100 ms) and pulse 120 dB; 
prepulse 75  dB (20  ms, lead time 100  ms) and pulse 
120  dB; and prepulse 80  dB (20  ms, lead time 100  ms) 
and pulse 120  dB. Each trial was repeated 10 times in 
quasi-random order and random intertrial intervals 
(10–20 s). PPI was defined as the percent decline of the 
startle response: 100 − [(startle amplitude after prepulse 
and pulse)/(startle amplitude after pulse only)] × 100. 
The procedure was performed according to our previous 
report [19].

GABA and glutamate contents in the brains
The frozen tissues were weighed and then homogenized 
by BioMasher II (Nippi, Inc., Tokyo, Japan) in 500 μL of 
0.1% formic acid in acetonitrile (Wako, Tokyo, Japan) 
containing an internal standard 2-morpholinoethanesul-
fonic acid (2-MES; Dojindo, Tokyo, Japan). The stand-
ard was spiked at a final concentration of 10  μM. The 
homogenates were centrifuged at 15,000×g for 15  min 
at 4  °C, and then, the supernatants were collected and 
filtered through an ISOLUTE PLD + column (Biotage 
Japan Ltd., Tokyo, Japan). The 40 μL filtrates were lyophi-
lized and stored at − 20 °C.

At the time of analysis, the lyophilized samples were 
dissolved in 1.25  mL of ultrapure water. The prepared 
sample solutions (3 μL) were then injected on ultra-
performance liquid chromatograph coupled to triple-
quadrupole mass spectrometer (LC/MS) (LCMS-8050; 
Shimadzu, Kyoto, Japan). The chromatographic condi-
tions were according to the Shimadzu method package 
using a pentafluorophenylpropyl (PFPP) column. The 
MS settings, data acquisition and data analysis were in 
accordance with the manufacturer’s instructions for 
analyzing Primary Metabolites version 2.0 (Cat. #: 225-
24865A, Shimadzu). The relative values of metabolites 
from the internal standard 2-MES and the weight of cor-
responding tissues were calculated and used for the fol-
lowing data analysis.

Standard solutions containing GABA (A2129, Sigma-
Aldrich Co. LLC., USA) and l-glutamic acid (G1251, 
Sigma-Aldrich) at dose ranges of 0.01–3  μmol/L and 
0.03–10  μmol/L, respectively, with internal standard 
2-MES (10  μM) were also applied to the LC/MS sys-
tem. The concentrations of GABA and glutamate in the 

sample solutions were determined by the peak heights of 
the chromatogram. The GABA and glutamate contents 
per the corresponding tissue weights were calculated.

Statistical analysis
Statistical analyses were conducted using BellCurve for 
Excel ver. 3.20 (Social Survey Research Information Co., 
Ltd., Tokyo, Japan). Significant differences among the 
multiple groups were analyzed by the Bonferroni mul-
tiple comparison test after one-way analysis of variance 
(ANOVA). Significant differences between two groups 
were analyzed by Student’s t-test. The factorial compari-
sons in some experiments were performed by two-way 
ANOVA. Data are expressed as the mean with standard 
error (SE). Statistical significance was defined as a p value 
less than 0.05.

Results
Generation of Gad1STOP−tetO knock‑in mice
To confirm the elimination of function of the Gad1 gene 
by inserting the Neo-STOP-tetO cassette, we first gener-
ated homozygous Gad1STOP−tetO/STOP−tetO mice by cross-
ing heterozygous Gad1STOP−tetO/+ parents and assessed 
whether the Gad1STOP−tetO/STOP−tetO mouse showed the 
Gad1 knockout phenotypes. Gad1STOP−tetO/STOP−tetO 
mice, Gad1STOP−tetO/+ mice and Gad1+/+ mice were born 
at the expected Mendelian frequency (Fig.  2a). Then, 
mouse pups were divided into two groups to determine 
the survival rates and palate formation. All Gad1STOP−
tetO/STOP−tetO mice died within 1 day after birth, but Gad-
1STOP−tetO/+ mice and Gad1+/+ mice survived (Fig.  2b). 
All Gad1STOP−tetO/+ and Gad1+/+ mice formed normal 
palate. However, 57% of Gad1STOP−tetO/STOP−tetO mice 
exhibited a cleft palate (Fig. 2c). These phenotypes are the 
same as those of Gad1−/− mice previously reported [31]. 
Western blot analyses demonstrated that the expression 
of GAD67 protein in the brain was abolished in Gad-
1STOP−tetO/STOP−tetO mice with or without cleft palate 
(Fig. 2d, e). These observations indicate that the insertion 
of the Neo-STOP-tetO cassette following the Gad1 pro-
moter eliminates the function of the Gad1 gene in mice.

Development of GAD67 knockdown mice
We then crossed heterozygous male Gad1tTA/+ mice and 
female Gad1STOP−tetO/+ mice to generate Gad1tTA/STOP−
tetO biallelic knock-in mice. Mice with four genotypes 
(Gad1+/+, Gad1tTA/+, Gad1STOP−tetO/+, Gad1tTA/STOP−
tetO) were born at the expected Mendelian frequency 
(Fig. 3 legend). Palate formation in mouse neonates with 
four genotypes was observed, but none of them exhibited 
the cleft palate (Fig. 3a). Next, the survival rates of these 
mice were examined in a small population. All Gad1+/+ 
mice (total n = 15) survived until 8 weeks of age (Fig. 3b). 
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Two Gad1tTA/+ mice (total n = 15), one Gad1STOP−tetO/+ 
mouse (total n = 17), and eight Gad1tTA/STOP−tetO mice 
(total n = 20) died within 8  weeks after birth (Fig.  3b). 
The proportion of genotypes in our breeding colony 
(total n = 1,319) at the weaning period (P21–P28) is 
shown in Fig.  3c. These observations indicate that the 
survival rate of Gad1tTA/STOP−tetO mice was lower than 
that of mice with the other genotypes. The protein levels 
of GAD67 in the FCX (F(3,8) = 4.355, p = 0.043, one-way 
ANOVA) and HIP (F(3,8) = 10.527, p = 0.004, one-way 
ANOVA) were significantly lower in Gad1tTA/STOP−tetO 
mice than Gad1+/+ mice at 8  weeks of age (Fig.  3d, e). 
On the other hand, the protein levels of GAD67 in the 
CER were not significantly different among the genotypes 
(F(3,8) = 2.867, p = 0.104, one-way ANOVA) (Fig. 3f ).

Next, the expression levels of GAD67 protein in the 
brains of Gad1tTA/STOP−tetO mice were examined in the 

absence and presence of Dox treatment. The Dox treat-
ment was performed on the mice at 8–10 weeks of age. 
We noticed that some Gad1tTA/STOP−tetO mice died dur-
ing the 3 weeks after starting the Dox treatment. Approx-
imately 44% of Gad1tTA/STOP−tetO mice survived just after 
3 weeks of Dox treatment (Fig. 4a). The expression levels 
of GAD67 protein in the FCX (F(3,8) = 20.563, p < 0.001, 
one-way ANOVA), HIP (F(3,8) = 189.298, p < 0.001, 
one-way ANOVA) and CER (F(3,8) = 22.760, p < 0.001, 
one-way ANOVA) were significantly decreased by treat-
ment with Dox in Gad1tTA/STOP−tetO mice compared with 
Gad1+/+ mice (Fig.  4b–d). Importantly, the expression 
level of GAD67 protein in the CER of Gad1tTA/STOP−tetO 
mice was markedly decreased in the presence of Dox 
compared with in the absence of Dox (Fig. 4d). By immu-
nofluorescence, GAD67 immunoreactivity in Gad1+/+ 
mice was detected widely in the brain, particulary at high 
levels in the olfactory bulb, globus pallidum, olfactory 
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tubercle, substantia nigra, superior and inferior colliculi, 
and deep cerebellar nuclei (Fig. 4e, upper panel). In brains 
of Gad1tTA/STOP−tetO mice, the overall immunoreactiv-
ity was reduced moderately without Dox treatment and 

severely with the treatment. Dox treatment to Gad1+/+ 
mice did not affect GAD67 immunoreactivity (data not 
shown). PV is expressed in a major subclass of GAD67-
positive inhibitory neurons [32]. No discernible changes 
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in PV immunoreactivity were found between Gad1+/+ 
mice and Gad1tTA/STOP−tetO mice with or without Dox 
treatment (Fig. 4e, lower panel). We assessed 3 independ-
ent mice in the respective groups and observed similar 
findings. These results suggest that Dox treatment glob-
ally suppresses the expression of GAD67 in the brains of 
Gad1tTA/STOP−tetO mice.

From these experimental results, GAD67 protein levels 
were found unexpectedly low in several brain regions in 
Gad1tTA/STOP−tetO mice. Therefore, we stopped compar-
ing Dox-treated and Dox-untreated Gad1tTA/STOP−tetO 
mice. Instead, in the following experiments, we com-
pared Dox-treated Gad1tTA/STOP−tetO mice and Gad1+/+ 
mice.

We measured the brain contents of GABA and gluta-
mate in Dox-treated Gad1tTA/STOP−tetO mice and Gad1+/+ 
mice. The GABA content was significantly lower in Dox-
treated Gad1tTA/STOP−tetO mice than in Gad1+/+ mice in 
the FCX, HIP and CER (Table 1). On the other hand, the 
glutamate content in the respective brain regions was 
comparable between these genotypes (Table 1).

Behavioral abnormalities in GAD67 knockdown mice
We compared the behavioral phenotypes of Gad1tTA/

STOP−tetO mice with those of Gad1+/+ mice in the pres-
ence of Dox treatment. To avoid the effects of sex dif-
ferences, male mice were only used in the following 
experiments.

We first investigated the body weights and the perfor-
mance of motor coordination in Dox-treated Gad1tTA/

STOP−tetO and Gad1+/+ mice. No difference was observed 
in the body weights (t(17) = 1.066, p = 0.301, Student’s 
t-test, Fig. 5a) or the latency to fall from the cylinder in 
the rotarod test (t(17) = 0.772, p = 0.451, Student’s t-test, 
Fig. 5b) between the two genotypes.

We next conducted the open-field test, which is a well-
accepted behavioral test to evaluate the anxiety-like 
state of rodents [33]. The total distance, total duration 
of movement, moving speed, distance per movement, 
and duration per movement were significantly increased 
in Dox-treated Gad1tTA/STOP−tetO mice compared with 
Dox-treated Gad1+/+ mice (Table  2). In contrast, the 
total number of movement episodes was significantly 
decreased in Dox-treated Gad1tTA/STOP−tetO mice com-
pared with Dox-treated Gad1+/+ mice (Table  2). These 
observations indicate that Gad1tTA/STOP−tetO mice walk 
longer distances with less frequency. In addition, Dox-
treated Gad1tTA/STOP−tetO mice walked a long time in the 
wall side and a short time in the center region compared 
with Dox-treated Gad1+/+ mice (Table  2 and Fig.  5c), 
indicating that Gad1tTA/STOP−tetO mice exhibited anxiety-
like behavior in the open-field test.

We further assessed acoustic startle responses and 
PPI responses in Dox-treated Gad1tTA/STOP−tetO and 
Gad1+/+ mice. The PPI response provides an opera-
tional index of sensorimotor gating, and an impaired 
PPI response is observed in subjects with schizophrenia 
[34]. The amplitude of acoustic startle responses was 
significantly affected by the effect of genotype × sound 
level interaction (F(8,168) = 2.745, p = 0.007, two-way 
ANOVA). The simple main effect of genotypes was sta-
tistically significant at the sound levels of 110  dB (F(1, 
92) = 6.345, p = 0.014) and 120  dB (F(1, 92) = 13.550, 
p < 0.001) (Fig.  5d). The PPI responses were signifi-
cantly affected by the effect of prepulse intensity 
(F(2,42) = 6.713, p = 0.003, two-way ANOVA) but not 
by the effect of genotype × prepulse intensity interac-
tion (F(2,42) = 0.577, p = 0.566, two-way ANOVA) or 
genotype (F(1,21) = 0.514, p = 0.481, two-way ANOVA) 
(Fig. 5e).

Table 1  Brain GABA and glutamate contents

Dox-treated Gad1+/+ (n = 10) and Gad1tTA/STOP−tetO (n = 9) mice were used to determine the brain contents of GABA and glutamate. Data represent the mean ± SE. % 
Reduction was calculated by 100 − [(the mean value of Gad1tTA/STOP−tetO mice)/(the mean value of Gad1+/+ mice)] × 100. A p value less than 0.05 was considered a 
significant difference (Student’s t-test)

Contents (nmol/mg tissue) % Reduction t values p values

Gad1+/+ Gad1tTA/STOP−tetO

GABA
 Frontal cortex 0.632 ± 0.027 0.462 ± 0.019 27.0 5.052  < 0.001

 Hippocampus 0.850 ± 0.033 0.546 ± 0.019 35.8 7.844  < 0.001

 Cerebellum 0.651 ± 0.026 0.281 ± 0.011 56.8 12.753  < 0.001

Glutamate
 Frontal cortex 5.550 ± 0.112 5.617 ± 0.156 − 1.2 0.350 0.731

 Hippocampus 5.477 ± 0.148 5.479 ± 0.171 0.0 0.008 0.994

 Cerebellum 4.184 ± 0.086 4.356 ± 0.127 − 4.1 1.144 0.268
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Discussion
We first generated Gad1STOP−tetO knock-in mice. All 
homozygous Gad1STOP−tetO/STOP−tetO mice died on the 
day of birth, and 57% of Gad1STOP−tetO/STOP−tetO mice 
exhibited a cleft palate. The expression of GAD67 pro-
tein was lacking in the brains of Gad1STOP−tetO/STOP−tetO 
mice with or without the cleft palate. These phenotypes 

in Gad1STOP−tetO/STOP−tetO mice are consistent with those 
in Gad1−/− mice [15, 31]. Therefore, the function of the 
Gad1 gene was eliminated by the insertion of the Neo-
STOP-tetO cassette in the 5′-untranslated region of the 
Gad1 gene in mice. It has been reported that neonatal 
death in Gad1−/− mice is caused by respiratory failure 
rather than impairment of suckling [15, 35]. Therefore, 
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neonatal death in Gad1STOP−tetO/STOP−tetO mice may also 
be caused by respiratory failure.

We next developed Gad1tTA/STOP−tetO biallelic knock-
in mice by crossing Gad1tTA/+ and Gad1STOP−tetO/+ par-
ents. Approximately 40% of Gad1tTA/STOP−tetO mice died 
on the day of birth, and the number of Gad1tTA/STOP−tetO 
mice at P21-P28 in our breeding colony was smaller than 
the numbers of mice with the other genotypes. None of 
the Gad1tTA/STOP−tetO mice demonstrated a cleft palate. 
Unexpectedly, some adult Gad1tTA/STOP−tetO mice died 
by treatment with Dox. Therefore, GAD67 is important 
for survival not only in the neonatal period but also in 
adulthood. However, the cause of death in Dox-treated 
Gad1tTA/STOP−tetO mice is currently unknown. To resolve 
this question, pathological examination is required in a 
future study.

Adult mice with Gad1 haplodeficiency demonstrated 
an approximately 40% reduction in GAD67 protein lev-
els in the whole brain compared with Gad1+/+ mice [27]. 
Consistently, we observed that heterozygous Gad1tTA/+ 
and heterozygous Gad1STOP−tetO/+ knock-in mice exhib-
ited a 30–50% reduction in GAD67 protein levels in the 
FCX, HIP and CER compared with Gad1+/+ mice. In the 
absence of Dox treatment, the expression level of GAD67 
protein in Gad1tTA/STOP−tetO mice relative to Gad1+/+ 
mice was dependent on the brain regions. In the immu-
noblotting analysis, the expression of GAD67 protein in 
the CER was comparable between Gad1tTA/STOP−tetO mice 
and Gad1+/+ mice. However, the expression of GAD67 
protein in the FCX and HIP was significantly lower in 
Gad1tTA/STOP−tetO mice than Gad1+/+ mice. Importantly, 
in the presence of Dox treatment, GAD67 expression was 
reduced by approximately 90% in the brains of Gad1tTA/

STOP−tetO mice, compared with Dox-treated Gad1+/+ 
mice. The brain-wide reduction of GAD67 expression in 
Dox-treated Gad1tTA/STOP−tetO mice was also observed in 
the immunofluorescence analysis. These findings suggest 

that GAD67 expression is suppressed by treatment with 
Dox in the brains of Gad1tTA/STOP−tetO mice.

In adult mice with Gad1 haplodeficiency, the GABA 
content in the brain was reduced by 7–20% from those 
in wild-type control mice [15, 32]. In this study, we found 
that the GABA contents in the FCX, HIP and CER of 
Dox-treated Gad1tTA/STOP−tetO mice were reduced by 
27.0–56.8% from those in Dox-treated Gad1+/+ mice. 
This result is inferred that the amount corresponding 
to the reduced GABA content compared to the GABA 
content in the brain of Gad1+/+ mice is derived from 
the amount biosynthesized by GAD67 expression in the 
brain of Gad1tTA/STOP−tetO mice. Therefore, the GABA 
reduction in the brains of Dox-treated Gad1tTA/STOP−tetO 
mice was larger than that in Gad1 haplodeficient mice. 
Because approximately half of the brain GABA is pro-
duced by GAD65 in adulthood [36], the remaining GABA 
in the brain of Dox-treated Gad1tTA/STOP−tetO mice is 
mainly synthesized by GAD65. The brain glutamate con-
tents in Dox-treated Gad1tTA/STOP−tetO mice were compa-
rable to those in Dox-treated Gad1+/+ mice. Therefore, 
the glutamatergic system may be normal in Dox-treated 
Gad1tTA/STOP−tetO mice.

GAD67 haplodeficient mice demonstrated several 
abnormal behaviors, such as hyper-locomotor activ-
ity, reduced interactions with an unfamiliar mouse, and 
aggressive behavior. However, the emotional behaviors in 
Gad1 haplodeficient mice were normal in the open-field 
test, the light–dark avoidance test and the elevated plus-
maze test [21, 23]. In the current open-field test, Dox-
treated Gad1tTA/STOP−tetO mice walked longer distances 
than Dox-treated Gad1+/+ mice. In addition, Dox-treated 
Gad1tTA/STOP−tetO mice preferentially walked for more 
time along the walls and for less time in the center region. 
These observations indicate that Dox-treated Gad1tTA/

STOP−tetO mice exhibited behavioral abnormalities, 
including the hyper-locomotor activity and anxiety-like 

Table 2  Summary of exploratory behaviors in the open-field test

Exploratory behaviors were measured for 5 min in the open-field in Dox-treated Gad1+/+ (n = 17) and Gad1tTA/STOP−tetO (n = 7) mice. Data represent the mean ± SE. A p 
value less than 0.05 was considered a significant difference (Student’s t-test)

Gad1+/+ Gad1tTA/STOP−tetO t values p values

Total distance (cm) 2434.4 ± 102.7 3495.0 ± 179.7 5.389  < 0.001

Total duration of movement (s) 166.8 ± 4.9 185.7 ± 5.5 2.235 0.036

Total number of movement episode 95.4 ± 2.1 86.7 ± 2.6 2.330 0.029

Moving speed (cm/s) 13.1 ± 0.3 17.8 ± 0.7 6.784  < 0.001

Distance per movement (cm) 23.4 ± 1.3 38.7 ± 3.1 5.380  < 0.001

Duration per movement (s) 1.8 ± 0.1 2.2 ± 0.1 3.295 0.003

Time spent in the wall side (s) 246.9 ± 5.5 271.6 ± 5.3 2.671 0.014

Time spent in the center region (s) 53.1 ± 5.5 28.4 ± 5.3 2.671 0.014

% Time spent in the center region 17.7 ± 1.8 9.5 ± 1.8 2.670 0.014
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behavior, in the open-field test. Since Gad1tTA/STOP−tetO 
mice exhibited normal body weight and motor coordi-
nation in the presence of Dox treatment, the changes in 
exploratory behavior are unlikely to be associated with 
physical dysfunction. It is well accepted that inhibition 
of GABAergic tone elicits anxiety-like behavior in the 
open-field test [33]. Therefore, the reduction in brain 
GABA in Dox-treated Gad1tTA/STOP−tetO mice may cause 
the induction of anxiety-like behavior. The mice lack-
ing GAD67 in protein phosphatase 1 regulatory subunit 
2 (Ppp1r2)-expressing cells, in which Cre recombinase 
expression is largely confined to GABA interneurons of 
the cerebral cortex and the hippocampus, demonstrated 
the hyper-locomotor activity and anxiety-like behavior in 
the open-field test [37]. In addition, we recently reported 
that mice lacking GAD67 in somatostatin-expressing 
GABA interneurons demonstrated anxiety-like behavior 
in the open-field test without affecting locomotor activity 
[20]. Therefore, the anxiety-like behavior in Dox-treated 
Gad1tTA/STOP−tetO mice may be due to GAD67 knock-
down from somatostatin-expressing GABA interneurons 
in cortical and hippocampal areas. In addition, the hyper-
locomotor activity in Dox-treated Gad1tTA/STOP−tetO mice 
may be associated with GAD67 knockdown from the 
other subtypes of GABA interneurons.

In this study, Dox-treated Gad1tTA/STOP−tetO mice 
showed a normal response to PPI. Therefore, global 
knockdown of GAD67 does not affect the PPI response. 
However, we previously reported that mice with condi-
tional Gad1 heterozygous knockout predominantly in 
parvalbumin-positive cells demonstrated an impaired 
response to PPI [19]. It is possible that a mild reduction in 
GAD67 in parvalbumin-positive cells might be required 
for impairing the PPI response. Interestingly, the startle 
responses elicited by large acoustic stimuli were impaired 
in Dox-treated Gad1tTA/STOP−tetO mice. The acoustic star-
tle response is a simple reflex of animals that results in 
a whole body motor response elicited by hearing a loud 
sound. Multiple neural circuits from the cochlear nucleus 
to motoneurons contributes to elicit the acoustic star-
tle reflex [38]. Therefore, it is possible that Dox-treated 
Gad1tTA/STOP−tetO mice might exhibit the impairment of 
the acoustic startle reflex associated with those neural 
circuits. In addition, GABAergic interneurons express-
ing GAD67 proteins constitute auditory neural networks 
and contribute to auditory function [39–41]. Therefore, 
global knockdown of GAD67 in the brain might induce 
the impairment of auditory function. To note that the 
behavioral responses by intensity of pre-pulse in the con-
trol mice were different between the present study and 
the previous study [19]. There are several possible rea-
sons to explain the different observations. First, it may 
be related to the difference in the environment during 

development between these two types of mice because 
all mice in the present study were born from GAD67 
haplodeficient (Gad1STOP−tetO/+) mothers and cared by 
the same mothers. We previously reported that wild-
type (Gad1+/+) mice born from GAD67 haplodeficient 
(Gad1GFP/+) mothers exhibited the vulnerability to stress 
at the adult age [42]. In addition, it has been reported 
that the anxious state in mother mice affects behavioral 
phenotypes in their pups at the adult age [43]. Second, we 
used wild-type (Gad1+/+) mice as the control, but Fuji-
hara et al. [19] used Gad1flox/+ mice as the control. The 
difference in genotypes might affect the reaction of PPI 
in mice. Third, there is difference whether the mice were 
subjected to Dox treatment or not. It can not be excluded 
the possibility that the Dox treatment affected the PPI 
reaction in mice. Further experiments are necessary to 
resolve the difference in the baseline reaction of pre-
pulse between the studies.

The GAD1 gene and GAD67 protein have often been 
targeted in human studies to elucidate an association 
with the pathophysiology of psychiatric disorders [44–
46]. Reduced full-length GAD1 transcript and GAD67 
protein is a consistent finding in the postmortem brains 
of patients with several psychiatric disorders including 
schizophrenia, bipolar disorder and major depressive dis-
order [7–12]. Because GAD67 reduction was predomi-
nantly observed in parvalbumin-positive GABAergic 
interneurons in the postmortem brains of schizophrenic 
patients [47–49], mice with conditional knockout of 
GAD67 in parvalbumin-positive cells have been used as 
an animal model of schizophrenia [18, 19, 50, 51]. On the 
other hand, the specific subsets of GABAergic interneu-
rons reducing GAD67 expression have not yet been iden-
tified in other psychiatric disorders, which might indicate 
that GAD67 expression is globally reduced in the brain 
of subjects with the other psychiatric disorders. In this 
study, global knockdown of GAD67 elicited anxiety-like 
behavior in mice. Therefore, we suggest the possibility 
that the global reduction in GAD1 transcript and GAD67 
protein in the brain might be related to the occurrence of 
anxiety symptoms frequently comorbid in several psychi-
atric disorders.

We did not examine whether administration of anxio-
lytic, antidepressant or antipsychotic drugs improves 
anxiety-like behavior in Dox-treated Gad1tTA/STOP−tetO 
mice. Because of the high lethality rate, we could not 
immediately prepare a sufficient number of animals for 
conducting a pharmacological study. Therefore, we will 
determine the utility of Dox-treated Gad1tTA/STOP−tetO 
mice as a tool for screening potential medications for 
anxiety symptoms in a future study.

In summary, Gad1tTA/STOP−tetO biallelic knock-in mice 
showed GAD67-knockdown phenotypes when treated 
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with Dox. We suggest that the global reduction in 
GAD67 elicits emotional and auditory abnormalities in 
mice. The use of GAD67 knockdown mice will provide 
new insights into the neurobiological impact of GAD67 
dysfunction and elucidate the neurobiological mecha-
nisms of emotional abnormalities associated with psychi-
atric disorders.
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