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The novel multiple sclerosis susceptibility 
gene ATXN1 regulates B cell receptor signaling 
in B‑1a cells
Qin Ma and Alessandro Didonna* 

Abstract 

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by 
complex gene-environment interactions. ATXN1 maps to 6p22.3, within the 233 loci associated with an increased risk 
of developing MS. Toxic gain-of-function mutations in ATXN1 cause the neurodegenerative disorder spinocerebellar 
ataxia type 1 (SCA1). Conversely, ATXN1 loss-of-function is involved in Alzheimer’s disease (AD) and tumorigenesis. 
We have recently shown that ATXN1 exerts a protective immunomodulatory activity in the MS model experimental 
autoimmune encephalomyelitis (EAE). Specifically, we demonstrated that mice lacking Atxn1 experience aggravated 
EAE due to aberrant B cell functions. Atxn1-null mice exhibit increased B cell proliferation with the concomitant 
expansion of specific B cell subsets including B-1a cells. This population of B cells is responsible for the production of 
natural immunoglobulins and has been associated with the etiology of multiple autoimmune diseases. To understand 
the role played by Atxn1 in these cells, we performed comprehensive transcriptomic profiling of Atxn1-null B-1a cells 
before and after stimulation with an encephalitogenic antigen. Importantly, we show that in this sub-population 
Atxn1 regulates immunoglobulin gene transcription and signaling through the B cell receptor (BCR).
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Background
B cell activation plays a central pathogenic role in the 
chronic, central nervous system autoimmune disease 
multiple sclerosis (MS) through several, non-mutually 
exclusive mechanisms that include the production of 
antibodies and other neurotoxic products, and antigen 
presentation with consequent propagation of neuroin-
flammation [1]. The administration of B cell depleting 
antibodies to people with MS has made a major impact 
on the management of the disease, definitely confirm-
ing their role in the expression, perhaps also initiation 
of the autoimmune response [2]. Decoding the genetic 
regulation of B cell function is therefore necessary to 

further our understanding of disease pathogenesis and 
advance next generation therapies. We have recently 
shown that ataxin-1—a polyglutamine protein implicated 
in the etiology of spinocerebellar ataxia type 1 (SCA1), 
Alzheimer’s disease (AD), and various types of cancer 
[3–5]—exerts a B cell-mediated protective effect on the 
experimental autoimmune encephalomyelitis (EAE) 
model [6]. This effect is mediated by regulating the extra-
cellular signal-regulated kinase (ERK) and signal trans-
ducer and activator of transcription (STAT) pathways. 
Noteworthy, ATXN1 is the most plausible MS associated 
gene in the 6p22.3 disease susceptibility locus [7].

Immunophenotyping in Atxn1-null EAE mice high-
lighted the significant expansion of the B-1a population. 
This particular B cell subset is characterized by CD5 and 
CD11b expression, secretes most of the circulating natu-
ral IgM antibodies [8], and its dysregulation has been 
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implicated in several autoimmune diseases, including MS 
[9]. B-1a cells also modulate the severity of the EAE phe-
notype [10]. We report here the transcriptional activity of 
B-1a cells in wild-type and Atxn1-null mice following an 
encephalitogenic challenge.

Results
B-1a cell isolation and transcriptome profiling were 
carried out as detailed in Additional file  1 and Addi-
tional file  2. In the cross-sectional comparison between 
wildtype and knockout B-1a cells, 81 differentially 
expressed genes (DEGs) were identified at baseline 
(62 up- and 19 down-regulated), while 123 DEGs were 
detected upon MOG peptide immunization (84 up- and 
39 down-regulated) (Additional file  3), with an overlap 
of 52 genes (Fig.  1a). These differences are sufficient to 
clearly separate the two genotypes by unsupervised clus-
tering, with 100% approximately unbiased probability in 
both conditions (Fig.  1b). Similar results were obtained 
using the full transcriptomes (Additional file  4). Gene 
ontology (GO) enrichment for the up-regulated genes in 
Atxn1-null B-1a cells highlighted “B cell receptor signal-
ing pathway” as the most significant category at baseline 
and upon MOG peptide-stimulation (Fig. 1c), principally 
due to the upregulation of immunoglobulin genes (Addi-
tional file  5). No category survived multiple correction 
in the GO analysis on the down-regulated genes in both 
conditions (Fig. 1c).

A suggestive association (uncorrected P < 0.001) with 
up-regulated genes in the VEGF signaling pathway was 
identified in MOG peptide-stimulated B-1a cells (Fig. 1c 
and Additional file 5). This pathway is crucial for cell sur-
vival and its chronic activation is typically associated with 
malignant CD5+ B cell accumulation in chronic lympho-
cytic leukemia (CLL) [11]. Thus, aberrant VEGF signal-
ing may also contribute to B-1a expansion in Atxn1-null 
mice in the context of adaptive immune response towards 
CNS antigens.

To capture those genes dynamically regulated upon 
the immune response, we then compared the transcrip-
tomic profiles at baseline and upon MOG peptide immu-
nization within each genotype. In this second analysis, 

46 DEGs were found in wildtype B-1a cells (28 up- and 
18 down-regulated) and 26 DEGs in knockout B-1a cells 
(21 up- and 5 down regulated) (Additional file 3), with an 
overlap of 14 genes (Fig. 1a). Also, in this case the differ-
ences produced a clear clustering (Fig. 1b and Additional 
file 4). GO analysis on the wildtype-specific DEGs found 
“inflammatory response” and “estrogen signaling path-
way” as the most significantly enriched categories for the 
up- and down-regulated genes, respectively (Fig. 1d and 
Additional file  5). A nominally significant association 
with the “phagocytosis” category was found for knock-
out-specific up-regulated genes (Fig.  1d and Additional 
file 5).

At the molecular level, ataxin-1 works in concert with 
the transcriptional repressor capicua (CIC) to inhibit the 
expression of target genes. Consequently, we screened 
the promoter regions of all the DEGs for the presence of 
two known CIC-binding motifs, TGA​ATG​AA and TGA​
ATG​GA, and observed a significant enrichment for the 
second target sequence upon MOG peptide immuniza-
tion (Additional file 6). These results indicate that DEGs 
in activated B-1a cells likely represent ataxin-1 direct 
targets while the genes found dysregulated at base-
line are downstream effectors. This hypothesis is fur-
ther supported by the evidence that a motif enrichment 
was found in longitudinally down-regulated genes from 
wildtype but not knockout B-1a cells (Additional file 6). 
Interestingly, our previous analysis performed in the 
whole B cell population showed an enrichment for CIC-
binding motifs only at baseline [6].

Conclusion
Here, we extended our characterization of ataxin-1 
immunomodulatory functions by reconstructing the 
genetic programs controlled by this protein in B-1a cells, 
a particular B cell subset that is pathologically expanded 
in Atxn1-null mice. We show that the immunoglobulin 
transcriptional machine in B-1a cells is under the tran-
scriptional control of ataxin-1, either in basal conditions 
or upon an encephalitogenic challenge. This is in agree-
ment with the elevated IgG and IgM serum titers that we 
have previously measured in Atxn1−/− mice [6]. Notably, 

(See figure on next page.)
Fig. 1  Ataxin-1 controls immunoglobulin transcription and antigen presentation in B-1a cells. a Venn diagrams showing the overlap of DEGs 
between Atxn1-null and wildtype B-1a cells in both cross-sectional and longitudinal comparisons. b Unsupervised clustering of the DEGs separates 
Atxn1-null and wildtype B-1a cells at baseline and 10 days post-immunization (dpi) with MOG peptide (heatmaps on the left). Clustering also 
separates B-1a cells between baseline and post-immunization conditions within each genotype (heatmaps on the right). c Histograms showing the 
significant GO terms associated with cross-sectional comparisons at baseline and 10 dpi. d Histograms showing the significant GO terms associated 
with the Atxn1-null and wildtype specific DEGs from longitudinal comparisons. Significant GO terms enriched in up-regulated genes are depicted 
in orange, while the GO terms enriched in down-regulated genes are depicted in blue. Asterisks indicate the GO terms that passed multiple 
comparison correction (Q values less than 0.05)
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intrathecal IgM production is a strong risk factor for 
clinically isolated syndrome (CIS) to MS conversion [12]. 

Hence, ataxin-1 expression in B-1a cells might affect dis-
ease risk by modulating IgM levels.
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The longitudinal gene expression analysis highlights 
the putative role of ataxin-1 in controlling the phago-
cytic activity of B-1a cells. In addition to immuno-
globulin secretion, B-1a cells have been demonstrated 
to effectively internalize and present antigens to CD4+ 
T cells [13]. Therefore, ataxin-1 may also regulate the 
antigen presenting cell (APC) function of B-1a cells in a 
pro-inflammatory milieu.

Lastly, we observed the dysregulation of VEGF signal-
ing in Atxn1-null B-1a cells. VEGF was shown to exert 
opposite effects in MS and EAE, either detrimental 
or protective, depending on the specific isoforms and 
receptors involved [14]. Intriguingly, this cascade was 
first found dysregulated in Purkinje neurons of a SCA1 
knock-in model [15], pinpointing possible mechanistic 
intersects between neurodegenerative and autoimmune 
processes.
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