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ALS-linked TDP-43M337V knock-in mice
exhibit splicing deregulation without
neurodegeneration
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Abstract

Abnormal accumulation of TAR DNA-binding protein 43 (TDP-43), a DNA/RNA binding protein, is a pathological
signature of amyotrophic lateral sclerosis (ALS). Missense mutations in the TARDBP gene are also found in inherited
and sporadic ALS, indicating that dysfunction in TDP-43 is causative for ALS. To model TDP-43-linked ALS in rodents, we
generated TDP-43 knock-in mice with inherited ALS patient-derived TDP-43M337V mutation. Homozygous TDP-43M337V mice
developed normally without exhibiting detectable motor dysfunction and neurodegeneration. However, splicing of mRNAs
regulated by TDP-43 was deregulated in the spinal cords of TDP-43M337V mice. Together with the recently reported TDP-43
knock-in mice with ALS-linked mutations, our finding indicates that ALS patient-derived mutations in the TARDBP gene at a
carboxyl-terminal domain of TDP-43 may cause a gain of splicing function by TDP-43, however, were insufficient to induce
robust neurodegeneration in mice.
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Main text
Abnormal accumulation of TDP-43 has been identi-
fied as a pathological signature of amyotrophic lateral
sclerosis (ALS), an adult neurodegenerative disease
characterized by a selective loss of motor neurons,
and a part of frontotemporal dementia (FTD) [1].
Cytoplasmic accumulation of TDP-43 with a loss of
TDP-43 from nuclei, known as a TDP-43 pathology,
is observed in almost all forms of ALS, including
sporadic and familial ALS. To date, more than 50
mutations in the TARDBP gene, encoding TDP-43,
have been identified in inherited and sporadic ALS,
implicating TDP-43 dysfunction as a central compo-
nent for ALS pathogenesis [2]. TDP-43 is a ubiqui-
tously expressed DNA/RNA binding nuclear protein
and plays multifunctional roles in RNA metabolism,

including pre-mRNA splicing, translational control,
and mRNA stability [3]. Of note, TDP-43 is known to
control its own mRNA stability through binding to the 3′
UTR, indicating that the level of TDP-43 protein is tightly
regulated [3]. Indeed, overexpression of wild-type TDP-43
in mice induces neurodegeneration, whereas elimination
of TDP-43 leads to embryonic lethality [4, 5]. However, it
is still unclear whether dysfunction in TDP-43 leads to
neurodegeneration through a gain or loss of TDP-43 func-
tion. To model TDP-43-mediated neurodegeneration in
mice, several lines of transgenic mice have been developed
and reproduced some features of neurodegeneration ob-
served in human ALS/FTD. However, the overexpression
approach has a limitation in differentiating the role
between wild-type and mutant TDP-43 in motor neuron
health and disease in mice [4, 5].
Based on these backgrounds, we set out to create a

knock-in mouse model carrying an ALS patient-derived
mutation in the murine Tardbp gene. Of more than 50
known mutations, we chose TDP-43M337V mutation for
the following reasons: TDP-43M337V protein has a long
half-life in cells, the ALS patients with this mutation
show earlier disease onset [6, 7], and an amino acid
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sequence of 241–414 including a methionine residue at
position 337 is highly conserved among mouse and hu-
man. We engineered mice with n.1009 A >G (M337V)
mutation in the murine Tardbp gene by utilizing CRISPR/
Cas9 genome-editing technology (Additional file 1). Both
homozygous and heterozygous mice carrying the allele of
TDP-43M337V developed normally as recently reported
(Fig. 1a, Additional file 1: Figure S1, S2) [8].
TDP-43 plays a pivotal role in regulating alternative

splicing as well as controlling the level of TDP-43
mRNA itself by a negative feedback mechanism. There-
fore, we first examined whether ALS-linked TDP-
43M337V mutation affects the expression level of its own
mRNA in mice. Analysis of TDP-43 mRNA levels in the
brains of 700-days-old homozygous TDP-43M337V mice
(TDP-43M337V/M337V) revealed that there was no differ-
ence in expression level between wild-type and TDP-
43M337V/M337V mice (Fig. 1b). In addition, the mRNA
levels of Notch1 and Nek1, known as TDP-43 target
genes, were unaffected by homozygous M337 V muta-
tion (Additional file 1: Figure S3). We next examined
whether TDP-43M337V deregulates alternative splicing of
mRNAs that are known as splicing targets of TDP-43.
Among the several splicing targets examined, we found
a 1.49-fold increase in inclusion of Kcinp2 exon 2/3, a
0.85-fold decrease in exclusion of Sort1 exon 17b, and a
0.63-fold decrease in exclusion of Sema3f exon 5 in the
brain of TDP-43M337V/M337V mice (Fig. 1c). Although
there were no significant changes in other splicing tar-
gets, Poldip3 and Eif4h (Additional file 1: Figure S4),
changes in splicing of Kcinp2, Sort1, and Sema3f in
TDP-43M337V/M337V mice are consistent with a gain of
TDP-43 function [9, 10].
Since the mislocalization of TDP-43 protein in cyto-

plasm is a pathological signature of ALS, we exam-
ined subcellular localization of TDP-43M337V mutant
protein in the affected tissue in TDP-43M337V/M337V

mice. Both mutant and wild-type TDP-43 proteins
expressed at the similar level, and were predominantly
localized in nucleus of brain and spinal cords of 700-
days-old TDP-43M337V/M337V and wild-type mice
(Fig. 1d, e), suggesting that disease-causing missense
mutation in TDP-43 alone did not alter the protein
level itself and was insufficient to induce protein mis-
localization in mice. Moreover, carboxyl-terminal (C-
terminal) fragments of TDP-43, characteristic of TDP-
43 pathology, were not detected in the brains and
spinal cords of TDP-43M337V/M337V mice (Fig. 1d),
and there was no detectable loss of motor neurons or
reactive gliosis in TDP-43M337V/M337V mice (Fig. 1e-g,
Additional file 1: Figure S5). Nuclear Gems, where
SMN complex resides to control splicing, are known to be
regulated by TDP-43 and FUS [11–13]. In ventral horn
neurons of TDP-43M337V/M337V mice, the number of

nuclear Gems was not altered (Additional file 1: Figure S6).
We further examined whether TDP-43M337V/M337V mice
show motor dysfunction with aging. Measurement of
rotarod and clasping scores as well as body weights revealed
no difference in those scores between TDP-43M337V/M337V

and wild-type mice until 18months old (Fig. 1h, i,
Additional file 1: Figure S2).
The present study demonstrates that homozygous

TDP-43M337V mice generated by CRISPR/Cas9 show
splicing deregulation of some TDP-43 target mRNAs
without apparent deterioration in motor function and
pathology until 20 months old. Recently, homozygous
TDP-43Q331K knock-in mice showed a reduced num-
ber of parvalbumin-positive interneurons and cogni-
tive dysfunction with phenotypic heterogeneity [9].
Homozygous TDP-43G298S or TDP-43M337V knock-in
mice showed very mild denervation of hindlimbs at
2.5 years of age [8]. Besides, heterozygous TDP-
43M323K mice, generated by N-ethyl-N-nitrosourea
(ENU) random mutagenesis, showed modest neurode-
generative phenotype [10]. These mutant mice uni-
formly show very mild phenotypes, likely because the
2-years-life span of rodents may be insufficient to in-
duce neurodegeneration derived from splicing deregu-
lation caused by mutant TDP-43.
Our TDP-43M337V/M337V mice showed splicing de-

regulation of TDP-43 target mRNAs, Kcinp2, Sort1,
and Sema3f, suggesting that M337 V mutation causes
a gain of function in TDP-43. Gain of TDP-43 func-
tion is also suggested in TDP-43Q331K and TDP-
43M323K mice [9, 10]. All three missense mutations
discussed here are located in the low complexity re-
gion at the C-terminal of TDP-43, suggesting that
ALS-causing TDP-43 mutations in the C-terminal re-
gion may cause gain of TDP-43 function, at least, at
an initial disease stage. This point makes a good con-
trast with the role of N-terminal TDP-43 fragment in
dominant-negative function in TDP-43 [14]. In our
study, the mRNA and protein levels of TDP-43 were
unchanged in TDP-43M337V mice, while they were
moderately upregulated in TDP-43Q331K [9]. This
difference may explain the more modest phenotype of
our TDP-43M337V mice.
All knock-in mice carrying ALS-linked missense muta-

tions in TDP-43 do not show robust TDP-43 pathology
even in homozygous mutant mice. Perhaps, additional
conformational change of TDP-43 protein may be
needed to develop TDP-43 pathology. Finally, our results
from TDP-43M337V knock-in mice further strengthen the
findings that mutations at the C-terminal region of
TDP-43 likely cause a gain of TDP-43 splicing function
at an initial stage of the disease, which may be followed
by the loss of TDP-43 function due to a loss of TDP-43
proteins from nuclei.

Watanabe et al. Molecular Brain            (2020) 13:8 Page 2 of 4



Fig. 1 Characterization of TDP-43M337V knock-in mice. a Schematic illustration of introducing TDP-43M337V mutation into an endogenous murine
Tardbp exon 6 (left panel). The representative genotyping result is also shown (right panel). Nhe I restriction site is introduced in the mutant allele,
resulting in no change of the amino acid at Nhe I site. b The expression level of Tardbp mRNA was not altered in the brains of 700-days-old TDP-
43M337V/M337V (M337 V/M337 V) mice and wild-type (WT) littermates. c Alternation in splicing of genes regulated by TDP-43. The level of mRNA
containing exons included by TDP-43 (Kcnip2 exon 2 and 3) was increased, while the levels of mRNA containing exons excluded by TDP-43 (Sort1
exon 17b and Sema3f exon 5) were reduced, suggesting a gain-of-function mechanism in TDP-43M337V/M337V mice. Relative expression levels of
mRNA normalized to the WT control are plotted with SD (n = 3 each (b, c)) and were analyzed by unpaired t-tests. d Representative immunoblots
of TDP-43 and β-actin in the brains and spinal cords of 700-days-old TDP-43M337V/M337V mice and WT littermates. Asterisk denotes a non-specific
band. e and f Representative immunofluorescence images of the anterior horn in lumbar spinal cords of 700-days-old TDP-43M337V/M337V mice
and WT littermates stained with anti-TDP-43 (3H8, green) and anti-ChAT (red) antibodies along with the merged images. TDP-43 was not
mislocalized in motor neurons of TDP-43M337V/M337V mice (e). Low magnification images stained with anti-ChAT antibody (f). Scale bars: 20 μm (e),
100 μm (f). g Quantification of the numbers of ChAT-positive motor neurons per each anterior horn (AH) in the lumbar spinal cords of 700-days-
old TDP-43M337V/M337V mice and WT littermates. For quantification, 20 AHs in three animals per each genotype were counted, and data are
plotted as mean ± SD, and were analyzed by an unpaired t-test. h and i TDP-43M337V/M337V mice did not show any motor dysfunction phenotypes
in the measurement of clasping score (h) and rotarod test (i). Data are plotted as mean ± SD, and were analyzed with two-way ANOVA. n = 15 for
WT and 14 for M337 V/M337 V
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13041-020-0550-4.

Additional file 1. Material and methods. Figure S1. Direct sequencing
of Tardbp gene exon 6 in heterozygous TDP-43M337V knock-in mice.
Figure S2. Body weights were not affected in TDP-43M337V knock-in mice.
Figure S3. Relative expression levels of Notch1 and Nek1 mRNAs were
not altered in the brain of aged homozygous TDP-43M337V mice. Figure S4.
Splicing was not altered in Eif4h or Poldip3, which are also regulated by
TDP-43, in the brain of aged homozygous TDP-43M337V mouse brains.
Figure S5. Gliosis was not observed in ventral horn of aged (700 days-old)
homozygous TDP-43M337V mice. Figure S6. The number of Gems was not
affected in ventral horn neurons of aged (700 days-old) homozygous TDP-
43M337V mice.
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