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Pharmacological inhibition of nSMase2 
reduces brain exosome release and α‑synuclein 
pathology in a Parkinson’s disease model
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Abstract 

Aim:  We have previously reported that cambinol (DDL-112), a known inhibitor of neutral sphingomyelinase-2 
(nSMase2), suppressed extracellular vesicle (EV)/exosome production in vitro in a cell model and reduced tau seed 
propagation. The enzyme nSMase2 is involved in the production of exosomes carrying proteopathic seeds and could 
contribute to cell-to-cell transmission of pathological protein aggregates implicated in neurodegenerative diseases 
such as Parkinson’s disease (PD). Here, we performed in vivo studies to determine if DDL-112 can reduce brain EV/exo-
some production and proteopathic alpha synuclein (αSyn) spread in a PD mouse model.

Methods:  The acute effects of single-dose treatment with DDL-112 on interleukin-1β-induced extracellular vesicle 
(EV) release in brain tissue of Thy1-αSyn PD model mice and chronic effects of 5 week DDL-112 treatment on behavio-
ral/motor function and proteinase K-resistant αSyn aggregates in the PD model were determined.

Results/discussion:  In the acute study, pre-treatment with DDL-112 reduced EV/exosome biogenesis and in the 
chronic study, treatment with DDL-112 was associated with a reduction in αSyn aggregates in the substantia nigra 
and improvement in motor function. Inhibition of nSMase2 thus offers a new approach to therapeutic development 
for neurodegenerative diseases with the potential to reduce the spread of disease-specific proteopathic proteins.
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Neurodegenerative diseases such as tauopathies and 
synucleinopathies [1–3] are typically characterized by the 
spread of proteopathic aggregates throughout the brain 
[4, 5]. Pathological protein aggregates comprising tau in 
tauopathies or alpha-synuclein (αSyn) in Parkinson’s dis-
ease (PD)  [6] first appear in a specific brain region and, 

as disease progresses, spread to other areas of the brain 
following neuroanatomical pathways.

Exosomes, small (30–150 nm in diameter) extracellular 
vesicles (EVs) of endocytic origin [7, 8], have been impli-
cated in the spread of protein aggregates throughout the 
brain [9] and specifically in the the propagation of αSyn 
pathology [10–16]. A subset of exosomes generated by a 
pathway independent of the major canonical endosomal 
sorting complexes required for transport (ESCRT) [17], 
is dependent on the activity of neutral sphingomyelinase 
2 (nSMase2) and plays a key role in the spread of proteo-
pathic seeds [18]. nSMase2 inhibition has been shown to 
also be associated with reduction in amyloid plaque load 
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and tau pathology in murine models of Alzheimer’s dis-
ease [19] and tauopathy [20], respectively.

In Bilousova et  al. 2018, we reported on identifica-
tion of a small molecule inhibitor of nSMase2, cambi-
nol (DDL-112), that decreased tau propagation, through 
screening of a small compound library in a cell model 
[21]. We showed that DDL-112, inhibits nSMase2 activ-
ity with an IC50 ~ 7.7  μM in  vitro and also inhibits the 
nSMase2 activity in the brain after a single oral dose [22]. 
nSMase2 hydrolyzes sphingomyelin to produce ceramide 
and thereby contributes to EV/exosome formation in the 
brain [23]. The role of nSMase2 in the development or 
progression of neurodegenerative disorders is evidenced 
by increased ceramide levels in the brain, serum and/
or plasma that have been reported as early predictors of 
such disorders [24] and memory impairment in PD [25].

Here, we extend our in  vitro findings by assessment 
of the in vivo effects of DDL-112 on EV biogenesis in an 
acute study, and on behavior/motor function and αSyn 
agregates in the Thy1-αSyn PD mouse model [26–28] in 
a chronic study.

In the studies described below, sucrose gradient puri-
fication was used for EV/exosome isolation from brain 
tissue based on published protocols [29–33] with minor 
modifications. Characterization of sucrose gradient F1, 
F2, and F3 fractions is presented in Additional file  1: 
Fig. S1. Immunoblot analysis confirmed the prevalence 
of exosomal markers CD63 and syntenin-1 (Synt-1), but 
no negative control marker calnexin (CNX), in the F2 
fraction as compared to the F1 and F3 fractions (Addi-
tional file  1: Fig. S1A). Transmission electron micros-
copy (TEM) of F1, F2, and F3 fractions from mouse 
brain EV/exosome purification shows an abundance of 
small EVs with the characteristic ‘cup’ shape and size 
of ~ 30–150 nm in the F2 fraction (Fig. 1b and Additional 
file 1: Fig. S1B). Small EVs (< 50 nm) were also found in 
the F3 fraction, but at a very low concentration and the 

F1 fraction largely consisted of membranous debris 
(Additional file 1: Fig. S1B).

The sucrose gradient characterization data confirm the 
enrichment of EV/exosomes in the F2 sucrose gradient 
fractions. To normalize these EV-containing F2 fractions 
for analyses, F2 pellets were resuspended in volumes of 
cryopreservation solution based on the original brain 
tissue weight (0.4  g of tissue/150  µl solution). Further 
details of the in vivo experimental methods done under 
protocols approved by the Animal Care and Use Com-
mittee can be found in Additional file 1.

To inform design of both the acute and chronic studies, 
we performed a preliminary study using Thy1-αSyn (Tg) 
and non-transgenic (NTg) littermate mice wherein mice 
were dosed orally with 100  mg/kg DDL-112 and brain 
tissue collected 3 h later for the determination of DDL-
112 brain levels and analysis of EV/exosomes. The mean 
DDL-112 brain tissue level for both Tg and NTg mice 
was ~ 650  ng/g (Additional file  1: Fig. S1C). The means 
were lower for EV/exosome levels in brain tissue from 
DDL-112-treated Tg (but not NTg) compared to DMSO 
vehicle-treated mice. Furthermore, EV αSyn (pS129) 
levels from DDL-112-treated Tg mice were lower when 
compared to vehicle, although the differences were not 
statistically significant (Additional file 1: Fig. S1D). Lev-
els of exosomal marker CD63 in F2 fractions from DDL-
112-treated Tg mice were significantly lower compared 
to vehicle (Additional file 1: Fig. S1E, F).

The findings from the preliminary study (Addi-
tional file  1: Fig. S1) suggest that EV/exosome biogen-
esis in Thy1-αSyn Tg mice is nSMase2-dependent, 
but also revealed that evaluation of nSMase2 inhibi-
tors in an acute setting would benefit from additional 
nSMase2 stimulation in Thy1-αSyn mice. Thus, in the 
acute study, after oral dosing pretreatment with DDL-
112, mice were injected intracerebroventricularly (ICV) 
with interleukin-1β (IL-1β) known to activate nSMase2 

(See figure on next page.)
Fig. 1  Inhibition of EV release by DDL-112 in an acute study and improvement in motor function as well as reduction of PK-resistant αSyn 
aggregates in the SN with chronic DDL-112 treatment of PD model mice. Acute study: a A scheme of the acute study protocol wherein mice were 
pre-treated with DDL-112 then received ICV injection of IL-1β before tissue collection is shown. b A representative transmission electron microscopy 
(TEM) image of the brain EV fraction. c Average concentrations of 50–200 nm size EVs from each treatment condition compared by Tunable 
Resistive Pulse Sensing (TRPS) analysis and levels. d Levels of DDL-112 in brain tissue of mice represented by the mean and SEM. e Representative 
images of immunoblot (IB) analysis of EV fractions from individual animals are shown; membranes were probed against exosomal markers (CD63 
and Synt-1) with Ponceau S (PS) as the loading control. f Densitometry analysis of CD63 IB images. g Densitometry analysis of Syntenin-1 (Synt-1) 
IB images. Optical density (OD) is shown as percent of control. N = 4 animals per group. Statistical analysis was performed using one-way ANOVA 
with post-hoc Tukey comparison tests: *p < 0.05 and **p < 0.01. Chronic study: Behavioral/motor function assessment of h Challenging Beam (CB) 
error-step (Veh n = 8, DDL-112 n = 7), i pole test time to descend (Veh n = 7, DDL-112 n = 6; one mouse in each group was a non-performer), and j 
Open Field (OF) distance (cm) traveled per episode of movement (Veh n = 8, DDL-112 n = 6; on mouse in the DDL-112 group was a non-performer). 
k Animal weight with and without DDL-112 treatment is shown. l The area in percent with proteinase K (PK)-resistant αSyn aggregates in the 
global SN is graphed. (Veh n = 8, DDL-112 n = 7). m Brain levels of DDL-112 at the time of euthanasia (4 h after dosing) are shown. All data plotted 
minimum to maximum. Statistics performed using Student’s unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001)
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Fig. 1  (See legend on previous page.)
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[34, 35] and elicit release of EVs [36, 37]. We chose this 
method of eliciting EV release because of the reported 
effect of IL-1β to activate nSMase2, polymorphisms in 
IL-1β are associated with increased risk for PD [38], and 
neuroinflammation mediated by IL-1β increases susepta-
bility of dopaminergic neurons to degeneration in animal 
models [39]; thus IL-1β could induce an PD phenotype 
[40].

In the chronic study, Thy1-αSyn mice were treated 
orally with DDL-112 for 5 weeks but without any IL-1β 
stimulation as the goal of this study was to assess the 
long-term (5  week) effects of nSmase2 inhibition on 
behavior/motor function and proteinase K-resistant αSyn 
aggregate load in a key area of brain affected by αSyn, the 
substantia nigra (SN).

As indicated in Fig. 1a showing the experimental design 
of the acute study, male Thy1-αSyn PD model mice [26] 
received a single oral gavage dose of DDL-112 at 100 mg/
kg, then one hour later were deeply anesthetized to 
receive 2 ng IL-1β ICV; two hours later, this group (DDL-
112) mice were euthanized and brain tissue collected 
for the isolation of EVs for analysis. Other groups in the 
study included vehicle-only ICV injection (Control) and 
IL-1β ICV injection without DDL-112 pre-treatment (IL-
1β). Further details of the experimental methods used 
in the acute in  vivo study, performed using protocols 
approved by the Animal Care and Use Committee, can be 
found in Additional file 1.

EVs of 50–200 nm in size from each treatment condi-
tion were compared by Tunable Resistive Pulse Sensing 
(TRPS) analysis, which revealed that IL-1β ICV injec-
tion significantly increased EV release (p < 0.05) and 
that DDL-112 pre-treatment significantly (p < 0.05) sup-
pressed the IL-1β-induced increase in EV/exosomes as 
shown in Fig. 1c. In the acute study, DDL-112 inhibition 
of IL-1β-induced EV/exosome release was seen in the 
presence of mean brain level of ~ 320 ng/g measured 3 h 
after dosing (Fig. 1d).

The EV/exosomes from the acute study mice were also 
analyzed by immunoblot, using probes for Synt-1 and 
pan-exosomal marker CD63. Representative blots are 
shown in Fig.  1e and Additional file  1: Figure S2A–C. 
CD63 was significantly increased in EV fractions by IL-1β 
injection (p < 0.01), and this increase was significantly 
decreased (p < 0.01) by DDL-112 pretreatment (Fig.  1f ). 
Levels of Synt-1, a marker more specific for a subpopu-
lation of exosomes generated through the syndecan-
syntenin pathway [41], while not significantly different 
between groups, showed a similar pattern of mean lev-
els being higher in the IL-1β treated group as compared 
to DDL-112 treated but with greater variability amongst 
mice (Fig. 1g).

In the collected EV/exosomes, while the αSyn lev-
els were lower we did not see a significant difference 
among the fractions. A representative immunoblot for 
EV fractions probed with anti-human αSyn and densi-
tometry analysis, and Ponceau S staining of the mem-
brane are shown in Additional file 1: Fig. S2D–F.

The results of the acute study showing that EV/exo-
some release was suppressed by DDL-112 in Thy1-αSyn 
mouse brain tissue (Fig.  1c) prompted us to proceed 
with a chronic, 5-week study of daily oral treatment of 
Thy1-αSyn mice with DDL-112 that included behavio-
ral/motor analysis and determination of affects on pro-
teinase K-resistant (PK-res) αSyn aggregation in the SN.

In the chronic study, male Thy1-αSyn mice of 
~ 3  months of age received 100  mg/kg/day DDL-112 
(n = 9) orally or vehicle (n = 8) for 5  weeks. During 
the course of the study, one mouse in each group was 
euthanized due to the progression of motor dysfunc-
tion that is characteristic of this model. In the last week 
of treatment, mice underwent behavioral/motor func-
tion assessment in Open Field (OF) [42], pole [43], and 
Challenging Beam (CB) [44, 45] tests. Mice were then 
deeply anesthetized and perfused with saline before 
collection of brain tissue for IHC analyses [46, 47].

After 5 weeks of treatment, the DDL-112 group made 
significantly (p < 0.05) fewer errors/step in the CB test 
than the vehicle Tg group as shown Fig. 1h. In the pole 
test, DDL-112 treated Thy1-αSyn took significantly 
less time to descend (Fig.  1i), and in OF, the distance 
traveled per episode of movement—indicative of the 
hyperactivity that is characteristic of this model [26]—
was reduced for DDL-112 treated mice (Fig. 1j). Other 
parameters typically measured as part of these motor 
tests were not signficantly different between vehicle- 
and DDL-112-treated mice. At the end of the 5  week 
treatment with DDL-112, there was no significant dif-
ference in mean weight between the DDL-112 treated 
and vehicle groups (Fig. 1k).

The presence of PK-res αSyn aggregates in the SN of 
Thy1-αSyn mice is a key distinguishing characteristic 
of brain tissue in this model and, more importantly, in 
human PD with Lewy bodies [48, 49]; thus any effects 
of DDL-112 treatment on the levels of these aggre-
gates [50] mediated by EV-mediated proteoapathic 
spread [51] was the focus of our IHC analyses. The 
percent area comprising PK-res αSyn aggregates in the 
SN globally was significantly lower (p < 0.05) in DDL-
112 treated mice as shown in Fig.  1l and Additional 
file 1: Fig. S3A, B. Analysis of correlation between PK-
res αSyn aggregates in the SN and motor assessments 
in CB, pole, and OF tests (Additional file  1: Fig. S3C–
3H) show positive correlations that they were greater 
for DDL-112 treated mice in all instances. These data 
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suggest DDL-112 treatment was able to decrease fur-
ther development of pathology within the dynamic 
range of pathology and motor performance relation-
ships in this model; for vehicle treated mice, pathology 
was beyond the dynamic range.

In the chronic study, we did not assess EV release in 
brain tissue due to the limitation of tissue available. EV 
isolation would have required too much tissue, prevent-
ing IHC analysis of αSyn aggregates. We also believe that 
determination of EV levels at a single time point without 
IL-1β stimulation of release would show only small dif-
ferences between the treated and untreated groups and 
statistics would only be powered by use of very high n 
numbers.

The current in  vivo studies support our previous 
in  vitro findings [21] that the nSMase2 inhibitor, DDL-
112, can suppress EV/exosome release and affect proteo-
pathic seed propagation. The acute in  vivo study shows 
that DDL-112 treatment results in suppression of EV 
release in the brain after IL-1β ICV injection, used to 
stimulate EV release. The chronic study demonstrated 
that 5-week DDL-112 treatment of Thy1-αSyn mice 
resulted in reduction of of PK-resistant αSyn aggre-
gate accumulation and improved some aspects of motor 
function.

While our focus here is on nSMase2 inhibition by 
DDL-112 (cambinol), cambinol is also a known sirtuin 1 
and 2 (SirT1/2) inhibitor [52], thus this mechanism and 
any potential effects on motor function and αSyn accu-
mulation in the chronic study has to be considered. SirT1 
has been demonstrated to affect lysosomal function and 
exosome secretion [53] as reported by Latifkar et al. who 
found that a reduction of SirT1 expression increased 
secretion of pro-tumorigenic exosomes [54]. Lee et  al. 
showed that loss of SirT2 expression also increased the 
total number of EVs, albeit by a separate suggested mech-
anism than that of SirT1 [55]. Others have also reported 
an association between loss of SirT1 and increased EV/
exosome release [56]. Based on these studies, if inhibi-
tion of SirT1 and/or 2 was implicated in treatment with 
DDL-112 then it could lead to increased EV release 
and might then be expected to exacerbate the spread of 
αSyn pathology, rather than ameliorate its spread as we 
observe in our chronic testing.

The role of SirT2 in PD is complicated. While reduction 
of its expression can increase EV release and potentiate 
disease pathology, sirtuin 2 inhibitors have been shown 
to block αSyn- mediated toxicity in PD models and thus 
could be a target for PD therapy [57, 58]. Conversely, 
SirT1 activation—not inhibition—has been found to be 
protective against αSyn-mediated toxicity, at least in cell 
models [59].

The potential for DDL-112 inhibition of SirT1/2 play-
ing a role in the observed improvements in motor func-
tion and suppression of αSyn pathology is not supported 
by the brain levels of DDL-112 both in the acute study 
(Fig. 1d), as well as in the chronic study (Fig. 1m). Based 
on the reported inhibition potency of DDL-112 for these 
enzymes, the measured brain levels would likely cause 
a greater inhibition of brain nSMase2 enzyme activ-
ity (IC50 = 7.7  μM) [21], compared to inhibition of the 
enzymes SirT1 (IC50 = 56 μM) or SirT2 (IC50 = 59 μM) 
[60], making the role of sirtuin-mediated mechanism in 
DDL-112 in vivo effects unlikely.

Additional in  vitro studies were performed to com-
pare DDL-112 to potent SirT1 and SirT2 inhibitors used 
at 20 μM. While DDL-112 reduced EV levels, the SirT2 
inhibitor increased EV release (Additional file 1: Fig. S4) 
providing further support to nSMase2, not SirT2, inhibi-
tion as the mechanism of action for DDL-112. The results 
from SirT1 inhibitor testing were inconclusive due to cell 
toxicity induced by the inhibitor. These findings support 
the likelihood that the mechanism by which DDL-112 
reduced αSyn aggregates in the chronic in vivo study was 
due, at least in part, to inhibition of brain nSMase2 and 
EV release.

Others have shown that inhibition of nSMase2 
decreases the transfer of oligomeric aggregates of αSyn 
in  vitro between neurons and reduces accumulation/
aggregation of high-molecular-weight α-Syn [61]. While 
nSMase2 inhibition has been reported to decrease tau 
propagation in vivo in a mouse model [20], the effects of 
nSMase2 inhibition on α-Syn propagation in brain in a 
PD model have not previously been reported.

nSMase2 is highly expressed in brain [62], with 
nSMase2 mRNA expression being reported to be high-
est in the striatum [63]. Normal phyiological levels of 
nSMase2 are thought to be important for protein clus-
tering in lipid rafts. nSMase2 activity is upregulated with 
age [64] along with increases in long chain C24:1 cera-
mide levels in circulating serum EVs which can induce 
senescence in mesenchymal stem cells [65]. Senescence 
of dopaminergic neurons accompanied by a senescence-
associated secretory phenotype (SASP) is suggested 
to be a contributing factor in the pathology of PD [66]. 
Increased exosome release is an integral part of SASP 
[67].

Mutations in the αSyn, E3 ubiquitin ligase Parkin, 
leucine-rich repeat kinase 2 (LRRK2), glucocerebro-
sidase (GBA), and acidic sphingomyelinase (SMPD1) 
genes—all known causes or risk factors for PD—have 
been linked to autophagy-lysosomal dysfunction, 
enhanced exosome biogenesis and exosomal αSyn load 
[68–73]. Manganese (Mn2+) exposure, an environmen-
tal risk factor of Parkinsonism, was shown to enhance 
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αSyn-bearing exosome release, which promotes cell-to-
cell propagation of pathological αSyn species including 
by microglia [74]. Uptake of PD-patient plasma EVs by 
mouse microglia cells both in vitro and in vivo results 
in the microglia-mediated release of αSyn-bearing 
exosomes, which then mediate spread of pathologic 
αSyn to neuronal cells [75]. Interestingly, contrary to 
the above examples of enhanced exosome release in PD, 
intracellular αSyn aggregates may increase degradation 
of Charged Multivesicular Body Protein 2B (CHMP2B/
ESCRT-III), leading to disruption of ESCRT functions 
[76]. Loss-of-function mutations in ATPase cation 
transporting 13A2 (PARK9) also decrease intraluminal 
vesicle formation and exosomal release [12, 77], poten-
tially through the ESCRT-dependent pathway. Col-
lectively, this suggests a switch from the canonical 
ESCRT-dependent to a stress-induced nSMase2-
dependent pathway of exosome biogenesis in PD. In 
agreement with this hypothesis, we demonstrate here 
that acute treatment with an nSMase2 inhibitor, DDL-
112, affects EV release in the Tg more than in NTg 
mice (Additional file 1: Fig S1), decreases levels of αSyn 
aggregates in the SN, and improves motor functions in 
a PD mouse model.

Our acute in  vivo study with the nSMase2 inhibitor 
DDL-112 shows that targeting this brain enzyme resulted 
in a reduction in IL-1β-mediated EV release and a trend 
to reduction in αSyn in the EV fraction (Additional file 1: 
Fig S2E). Our chronic study shows DDL-112 treatment 
is associated with a reduction in αSyn aggregates in the 
SN and improvement of motor function. These studies 
provide initial proof-of-concept and suggest inhibition of 
brain nSMase2 with molecules having improved potency 
and brain permeability could be a therapeutic strategy for 
treatment of PD. In the acute study we show that treat-
ment with DDL-112 results in decreased EV levels and 
lowering of αSyn levels in EV fractions compared to vehi-
cle, although these did not reach significance possibly 
due to limited animal numbers. While we did not meas-
ure EV levels in the chronic study due to the amount of 
tissue needed to analyse EVs, we detected DDL-112 levels 
in brain (Fig. 1m) that were similar to those we reported 
in Bilousova et al. [21] that were associated with inhibi-
tion of nSMase2 brain activity and thus could lead to a 
reduction of αSyn aggregates and improvement in motor 
function. In future studies, we will repeat and expand our 
acute IL-1β ICV mediated EV release testing paradigm 
to optimize the protocol for screening of additional brain 
permeable nSMase2 inhibitors  that can decrease EV 
release and be used as drug candidates to suppress the 
spread of disease-specific proteopathic proteins.
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