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The physiological role of Homer2a and its 
novel short isoform, Homer2e, in NMDA 
receptor‑mediated apoptosis in cerebellar 
granule cells
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Abstract 

Homer is a postsynaptic scaffold protein, which has long and short isoforms. The long form of Homer consists of 
an N-terminal target-binding domain and a C-terminal multimerization domain, linking multiple proteins within a 
complex. The short form of Homer only has the N-terminal domain and likely acts as a dominant negative regulator. 
Homer2a, one of the long form isoforms of the Homer family, expresses with a transient peak in the early postnatal 
stage of mouse cerebellar granule cells (CGCs); however, the functions of Homer2a in CGCs are not fully understood 
yet. In this study, we investigated the physiological roles of Homer2a in CGCs using recombinant adenovirus vec‑
tors. Overexpression of the Homer2a N-terminal domain construct, which was made structurally reminiscent with 
Homer1a, altered NMDAR1 localization, decreased NMDA currents, and promoted the survival of CGCs. These results 
suggest that the Homer2a N-terminal domain acts as a dominant negative protein to attenuate NMDAR-mediated 
excitotoxicity. Moreover, we identified a novel short form N-terminal domain-containing Homer2, named Homer2e, 
which was induced by apoptotic stimulation such as ischemic brain injury. Our study suggests that the long and short 
forms of Homer2 are involved in apoptosis of CGCs.
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Introduction
Homer proteins are scaffold proteins that predomi-
nantly exist in the postsynaptic density (PSD) of neurons 
and tether a variety of target proteins within the PSDs, 
including the group I metabotropic glutamate receptor 
1α/5 (mGluR1α/5), inositol 1,4,5-trisphosphate receptor 
(IP3R), and Shank, a scaffold protein for the N-methyl-D-
aspartate receptor (NMDAR) complex [1–4]. There are 
three distinct genes in the Homer family, Homer1/vesl-1, 

Homer2/Cupidin/vesl-2, and Homer3, and they are clas-
sified into two major forms, long and short [5, 6]. Long 
Homers, such as Homer1b/c/d, 2a/b, and 3a/b, consist 
of two main domains, the N-terminal enabled/vasodi-
lator-stimulated phosphoprotein homology 1 (EVH-1) 
domain for the target binding and the C-terminal coiled-
coil domain for the self-multimerization [7]. However, 
the short Homer, such as Homer1a, which has been 
reported as an immediate-early gene induced by electro-
convulsive seizure in an activity-dependent manner [8], 
only has the N-terminal target-binding domain. Thus, 
Homer1a is thought to act as a natural dominant negative 
regulator by competing with long Homer proteins that 
form Homer-target protein multimers via the C-terminal 
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domain [9, 10]. In addition, Homer1a is known to pro-
mote cell protection from apoptosis [11–13].

We have reported that Homer2a (also known as Cupi-
din), a long Homer isoform, has an expression pattern 
that peaks around postnatal day 7 during mouse cerebel-
lar development [14] and is highly expressed in cerebel-
lar granule cells (CGCs) [15]. In the postnatal stage with 
high Homer2a expression, a significant apoptotic event 
of CGCs is observed [16]. Additionally, the development 
and survival of CGCs is associated with glutamatergic 
activity via NMDAR [17]. It has also been reported that 
glutamate stimulation leads to the postsynaptic targeting 
of Homer2a and its declustering in CGCs [18]. Therefore, 
Homer2a may be associated with developmental events 
of CGCs including apoptosis, however, its physiological 
role has not been fully elucidated.

In this study, we investigated the physiological role of 
Homer2a and found its novel short isoform, Homer2e. 
We analyzed the effects of Homer2a on the clustering of 
NMDAR, and on NMDA currents and NMDA-induced 
apoptosis in CGCs. We also described the ischemia-asso-
ciated induction of the novel alternative splicing Homer2 
isoform, Homer2e, in CGCs.

Materials and methods
Cerebellar primary culture and oxygen–glucose 
deprivation (OGD)
Primary dissociated CGCs were prepared from fetal ICR 
mice (Nihon SLC, Hamamatsu, Japan) as described pre-
viously [19]. Briefly, cerebella from 18-day-old embryos 
were trypsinized with 1% trypsin (Sigma-Aldrich, St. 
Louis, MO, USA) and 500 units/mL DNase I (Sigma-
Aldrich) for 13 min at 37 °C and were further triturated 
by repeated passage through a fine-tipped pipette in 
Ca2+-free Hank’s balanced salt solution (HBSS; Sigma-
Aldrich) containing 500 units/mL DNase I and 12  mM 
MgSO4. Dispersed cells were plated at a density of 
35 × 104 cells/cm2 on poly-l-lysine-coated glass cover 
slips (Matsunami, Osaka, Japan), and then cultured in 
serum-free Eagle’s medium supplemented with 1  mg/
mL bovine serum albumin, 10  μg/mL bovine insulin, 
0.1 nM l-thyroxine, 0.1 mg/mL human transferrin, 1 μg/
mL aprotinin (all from Sigma-Aldrich), 30  nM sodium 
selenite (Merck, Darmstardt, Germany), 0.25% glucose 
(Nacalai Tesque, Kyoto, Japan), 2 mM glutamine (Nacalai 
Tesque), 100  μg/mL streptomycin (Meiji Seika, Tokyo, 
Japan), and 100 U/mL penicillin (Banyu Pharmaceutical, 
Tokyo, Japan). The cultures were maintained at 37 °C in 
a humidified incubator with 5% CO2, and half the volume 
of the culture medium was replaced with fresh medium 
once a week. The cultures were used at 12–15  days 
in  vitro (DIV). Oxygen–glucose deprivation experiment 
was carried out using AnaeroPack (MGC, Tokyo, Japan) 

according to the manufactures’ instructions with Eagle’s 
medium in the absence of glucose and incubated the cells 
for 90  min at 37  °C in a humidified incubator with 5% 
CO2.

Generation and infection of adenoviruses expressing 
EGFP‑Homer2a constructs
The enhanced green fluorescent protein (EGFP)-coding 
region of pEGFP-C1 (Clontech, Cambridge, UK) was 
fused in frame to the Homer2a N-terminus or to mutants 
to generate EGFP-fused Homer2a constructs. Repli-
cation-deficient adenoviruses were generated with the 
COS-TPC method as described previously [20]. Briefly, 
the EGFP-tagged full-length (H2a-F), C-terminal (H2a-
C), and N-terminal domain of Homer2a (H2a-N) were 
cloned into the SwaI site of the pAxCAwt cosmid cassette 
(Takara, Tokyo, Japan). The recombinant adenoviruses 
(AdVs) were generated by homologous recombination 
between an EcoT22I-digested Ad5-dlx DNA-terminal 
protein complex and recombinant cosmid vectors in 
HEK293 cells. The generated AdVs were propagated in 
HEK293 cells. The AdVs were concentrated and puri-
fied by double cesium chloride gradient centrifugation 
and the titers of AdVs were measured by the 50% tissue 
culture infectious dose method [21]. Cultured CGCs at 
12 DIV were exposed to AdVs at a multiplicity of infec-
tion = 30. Infected CGCs were analyzed 48  h after the 
infection (14 DIV).

Immunocytochemistry
Immunocytochemistry was performed as described pre-
viously with minor modifications [22]. Briefly, cells were 
fixed with 4% paraformaldehyde in 0.1  M phosphate 
buffer, permeabilized in methanol for 30 min at − 30 °C, 
preincubated with 5% normal donkey serum in PBS for 
1 h, and then incubated with the primary antibodies, rab-
bit anti-Homer2a antibody [14] or mouse anti-NMDA 
receptor 1 (NR1) antibody (BD Transduction Laborato-
ries, Lexington, KY, USA), for 16 h at 4 °C. After washing 
with PBS, the samples were incubated with Alexa-con-
jugated secondary antibodies (Thermo Fisher Scien-
tific, Waltham, MA, USA). Coverslips were mounted in 
Vectashield (Vector Laboratories, Burlingame, CA, USA) 
mounting medium. Immunofluorescence was observed 
using a Meta-510 confocal laser microscope (Zeiss, 
Oberkochen, Germany).

Western blotting
Western blotting was performed as described previously 
with minor modifications [23]. Total cell lysates prepared 
from CGC cultures were boiled in SDS-PAGE sample 
buffer. Samples were separated by SDS-PAGE gels and 
blotted onto a polyvinylidene difluoride membranes. 
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Proteins on the membranes were immunodetected with 
rabbit anti-Homer2a, rabbit anti-pan Homer [15]. The 
immunoblots were incubated with horseradish perox-
idase-conjugated secondary antibodies (KPL, Gaith-
ersburg, MD, USA) and developed with ECL reagents 
(Amersham, Buckinghamshire, UK). The chemilumines-
cence was imaged by a LAS-3000 imaging system (Fuji-
film, Tokyo, Japan). The band intensity was quantified 
with Image J (National Institutes of Health).

Electrophysiology
Whole-cell patch clamp recordings were obtained using 
a partly modified previously reported method [24]. AdV-
infected CGCs on glass coverslips at 14 DIV (2 days after 
infection at 12 DIV) were transferred into the experimen-
tal chamber and superfused with modified Krebs–Ringer 
solution (mM): 145 NaCl, 5 KCl, 2 CaCl2, 10 glucose, 10 
HEPES, 0.01 glycine (pH 7.4 with NaOH). Tetrodotoxin 
(1  μM), bicuculline (10  μM), and NBQX (10  µM) were 
added to block action potential, GABAergic transmis-
sion, and non-NMDAR-mediated glutamatergic trans-
mission, respectively. NMDA (50 µM) and AP5 (50 µM) 
were applied to elicit and block the NMDA current, 
respectively. All agonists and antagonists were purchased 
from Tocris (Tokyo, Japan). The experimental chamber, 
consisting of an acrylic frame with a glass bottom, was 
mounted on the stage of an inverted Eclipse TE2000-U 
phase contrast microscope (Nikon, Tokyo, Japan). Patch 
pipettes were made from glass capillaries (Clark Electro-
medical Instruments, Pangbourne, UK) using a P-97 hor-
izontal puller (Sutter Instrument, Novato, CA, USA). The 
pipette had a direct current resistance of 4–7 Ω when it 
was filled with the following solution (mM): 140 D-glu-
curonate, 7 CsCl, 155 CsOH, 5 EGTA, and 10 HEPES 
(pH 7.2 with CsOH). The pipette was connected to patch 
clamp amplifier AXOPATCH 200B (Molecular Devices, 
San Jose, CA, USA) and filtered with a 1 kHz Bessel low-
pass filter.

Cell survival assays
The MTT assay was performed using MTT Kit I 
(Boehringer Mannheim, Mannheim, Germany) accord-
ing to the manufacturer’s instructions. Briefly, 10 μL of 
the 5  mg/mL MTT labeling reagent was added to 100 
μL of neuronal cultures in each well of 96-well culture 
plates, and the plates were incubated for 4 h at 37 °C in 
a humidified incubator with 5% CO2. Then, 100 μL of 
the solubilizing solution was added to each well and fur-
ther incubated overnight. Absorbance of the solubilized 
samples was measured at 570 nm and 700 nm (reference 
wavelength). The extent of MTT conversion in cells was 
expressed as a percentage of the control.

Preparation of brain ischemia samples
Transient global cerebral ischemia was induced using 
the bilateral occlusion of the common carotid arteries 
technique as previously described [25]. ICR mice at P56 
were anesthetized and an incision was made in the ven-
tral neck to expose the common carotid arteries. Brain 
ischemia was induced by bilateral occlusion of the com-
mon carotid arteries using aneurysm clips for 20  min. 
At the end of each occlusion, the aneurism clips were 
removed, and the arteries were visually inspected for 
reperfusion. The incision was then closed with sutures.

Nested PCR, molecular cloning, and RT‑PCR of Homer2 
isoforms
The Homer2 isoforms were cloned by the nested PCR 
method using a mouse brain cDNA library and the 
following primers: the outer primer set, 5′ primer, 
Homer2a-5′-exon2-fw (5′-TCA​CCA​GGA​ACA​GCT​
ATC​GG-3′, corresponding to exon2 of Homer2a), and 
3′ primer, Homer2a-3′-UTR-rev (5′-TCT​GGA​GAC​
AGA​CAG​ATC​GC-3′, corresponding to the 3′ untrans-
lated region of Homer2a), and the inner primer set, 5′ 
primer, Homer2a-5′-exon3-fw (5′-CGG​TTT​GGG​ATT​
CTC​CTC​CG-3′, corresponding to exon3 of Homer2a), 
and 3′ primer, Homer2a-3′-exon9-rev (5′-TTT​GAT​
TGT​CTC​TTT​CGG​CC-3′, corresponding to exon9 of 
Homer2a). Amplified DNA fragments were cloned into 
the pCR4-TOPO vector (Thermo Fisher Scientific) and 
sequenced. For RT-PCR, the TRIzol Reagent (Thermo 
Fisher Scientific) was used to prepare total RNA 
from cerebella of either normal or ischemia-induced 
mice (ICR at P56) and from CGC cultures that were 
untreated or subjected to oxygen and glucose depriva-
tion for 60 min. RNA samples were digested with RQ1 
RNase-free DNase (Promega, Madison, WI, USA) for 
30  min at 37  °C. The resulting DNA-free RNAs were 
used to synthesize cDNAs using SuperScript II reverse 
transcriptase (Thermo Fisher Scientific) and oligo 
dT. PCR of the cDNAs was performed with an ExTaq 
polymerase kit (Takara) with specific primers bridging 
between exon4 and exon6 of Homer2a. The PCR prod-
ucts were separated on 2% agarose gel and visualized 
using a UV transilluminator (Bio-Rad, Tokyo, Japan) 
after staining with ethidium bromide.

Statistical analysis
Data are presented as the mean ± SEM. Comparisons 
of multiple data were statistically evaluated by one-way 
analysis of variance (ANOVA) and post hoc Bonferroni 
test.
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Results
Overexpression of exogenous Homer2a in CGCs
To clarify the function of Homer2a in CGCs, four 
recombinant AdV vectors were constructed (Fig.  1A): 
AdV carrying EGFP only, and three AdV constructs 
consisting of EGFP fused to full length (H2a-F), C-ter-
minal (containing residues 112–343; H2a-C) or N-ter-
minal (containing residues 1–111; H2a-N) Homer2a, 

which structurally resemble a short form of Homer, like 
Homer1a.

We first confirmed that all the Homer2a proteins were 
overexpressed in CGCs by Western blotting (Fig.  1B). 
Cultured CGCs were infected with AdVs at 12 DIV and 
were analyzed 48  h after infection. The anti-Homer2a 
antibody, which binds to the C-terminus of Homer2a, 
immunodetected H2a-F and H2a-C but not the H2a-N, 

Fig. 1  Overexpression of the Homer2a constructs in CGCs and their subcellular distributions. A Schematic image of the AdV-vector constructs of 
Homer2a. H2a-F, full-length Homer2a; H2a-C, carboxy-terminal side of Homer2a; H2a-N, amino-terminal side of Homer2a. B Immunoblotting of 
Homer2 in CGCs infected with AdV-vector constructs. Equal amounts of protein were loaded in each lane and immunoblotted with antibodies 
against Homer2a and pan-Homer. C Subcellular distribution of each Homer2a variant expressed in CGCs. Scale bar, 50 µm
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because it lacked the epitope for this antibody (Fig.  1B, 
left). The anti-panHomer antibody, which binds to the 
N-terminus of all Homer family isoforms, detected H2a-F 
and H2a-N but not H2a-C (Fig. 1B right). These results 
indicated that the recombinant AdV-Homer2a infection 
successfully induced the overexpression of Homer2a pro-
teins in CGCs.

Next, we analyzed the subcellular localization of endog-
enous Homer2a and its overexpressed mutants in CGCs 
(Fig. 1C). The endogenous Homer2a was observed in cul-
tured CGCs mostly in a punctate pattern at postsynaptic 
sites as we previously reported [14, 18]. In CGCs over-
expressing EGFP-fused H2a-F, EGFP fluorescence were 
observed as punctate pattern along dendrites, which is 
thought to be postsynaptic sites. However, when EGFP-
fused H2a-C and H2a-N were overexpressed, EGFP fluo-
rescence were observed mainly in soma and neurites with 
punctate pattern along dendrites.

Colocalization of Homer2a and NMDAR
Because Homer2a binds and regulates postsynaptic pro-
teins [14, 26], we examined the colocalization of post-
synaptic glutamate receptor NR1 and Homer mutants 
in CGCs (Fig.  2). The immunoreactivity for recom-
binants of Homer2 appeared to be localized at the area 

immunoreactive to NR1 with punctate pattern. On the 
other hand, the punctate immunoreactivity of NR1 was 
disappeared in H2a-N overexpressed CGCs. These data 
suggest that Homer2a overexpression alters the localiza-
tion of NR1, which may affect the physiological pheno-
type of CGCs.

NMDA currents decrease upon overexpression 
of the N‑terminal domain of Homer2a
NMDAR is a calcium permeable glutamate receptor, 
which is related to several critical cellular events such as 
synaptic plasticity, cellular differentiation, and apoptosis 
[27]. To examine the effects of Homer2a overexpression 
on the physiological response of NMDAR, we carried out 
whole-cell patch-clamp recordings on CGCs (Fig.  3). In 
naive CGCs, application of 50  μM NMDA under volt-
age clamp at − 60 mV elicited inward currents that were 
blocked by AP5, an NMDAR antagonist (Fig.  3A). We 
also recorded these NMDA currents in AdV-infected 
CGCs (Fig.  3A, B). Compared with EGFP-expressing 
CGCs, in H2a-F-overexpressing CGCs the amplitude of 
NMDA currents tended to be increased. However, con-
sistent with the altered localization of NR1, H2a-N-over-
expressing CGCs showed a significantly lower NMDA 
current amplitude (Fig. 3B).

Fig. 2  The colocalization of Homer2 mutants and NR1. EGFP and NR1-immunostained CGCs overexpressing Homer2 variants. Scale bar, 10 µm
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Overexpression of the Homer2a N‑terminal domain 
suppresses NMDA‑mediated cell death of CGCs
Changes in NMDAR localization and activity are asso-
ciated with cell apoptosis [17]. Therefore, we examined 
the cell viability of AdV-infected CGCs after NMDA 
administration. We treated the cells with different 
doses of NMDA with or without AP5 and analyzed the 
NMDA-induced cell death of H2a-F, -C or -N-overex-
pressing CGCs by the MTT assay (Fig. 4). Among these 

cells, the relative MTT values of H2a-N-overexpressing 
CGCs were the highest after treatment with all NMDA 
doses (100 μM, 300 μM, and 1 mM), however this dif-
ference was diminished by co-application of AP5. These 
results indicated that H2a-N-overexpressing CGCs 
were more resistant to NMDAR-mediated excitotox-
icity than EGFP, H2a-F, and H2a-C-overexpressing 
CGCs.

Fig. 3  NMDAR currents were decreased by overexpression of the N-terminal domain of Homer2a. A Top row: representative NMDA-induced inward 
current trace from control (non-AdV-infected) CGCs. Middle and bottom rows: representative current traces from CGCs infected with EGFP or 
Homer2 constructs. Whole cell recordings were performed 48 h after infection. B Quantification of NMDA currents. Infection with H2a-N caused a 
significant decrease in the NMDA current compared with the EGFP group. E: EGFP, F: H2a-F, C: H2a-C, N: H2a-N. *p < 0.05, one-way ANOVA and post 
hoc Bonferroni test. n = 3

Fig. 4  Overexpression of the Homer2a N-terminal domain suppressed NMDA-induced apoptosis. Normalized optical density of MTT assays of CGCs 
overexpressing EGFP or Homer2 constructs after the indicated NMDA treatment. NMDA-induced cell death was inhibited in H2a-N-overexpressing 
CGCs under all doses of NMDA. E: EGFP, F: H2a-F, C: H2a-C, N: H2a-N. *p < 0.05, one-way ANOVA and post hoc Bonferroni test; n = 3
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The newly identified short isoform, Homer2e, is induced 
by ischemia
Because overexpression of H2a-N, a Homer1a-like short 
Homer2a, exerted resistance to NMDAR-induced apop-
tosis of CGCs, it is possible that apoptosis-dependent 
expression of short Homer2 proteins can function as an 
apoptosis-resistance molecule, just like Homer1a [11–
13]. To examine whether any of short Homer2 isoforms 
are expressed in apoptotic CGCs, we performed nested 
and RT-PCR analysis of Homer2 mRNA expressed before 
and after apoptosis induction (Fig. 5). In the cerebellum 
of mouse ischemic brain, we detected by nested PCR a 
Homer2-derived band (Fig.  5A). The same nested PCR 
product was also obtained from cultured CGCs with 
OGD, which induces apoptosis in CGCs [28]. Sequence 
analysis identified this product as an alternative splic-
ing variant of Homer2a containing a frame shift that 
occurred by skipping exon5 and a part of exon6 (Fig. 5B, 
C). The open reading frame predicted for this novel 
product, named Homer2e, is composed of 174 amino 
acids, including the entire N-terminal target-binding 
domain, but lacking the C-terminal domain of Homer2a. 
This frame-shifted C-terminus domain of Homer2e 
(CCQ C EEVGD GAADPAGEQRPADHGTAGVG-
GQRGAVEAAVLHLQGRE) did not match any protein 
domains from conserved domain sequence database in 
NCBI. Thus, this novel isoform is thought to be structur-
ally similar to the short Homer1a, and may act as a domi-
nant negative of long Homer2a.

Discussion
Our study showed that overexpression of the Homer2a 
N-terminal domain decreased NR1 localization and the 
NMDA currents, and had an antiapoptotic function in 
CGCs. Moreover, we identified a new short Homer2 iso-
form, Homer2e, which was upregulated in response to 
apoptotic conditions and ischemic brain injury.

Because of the relationship between Homer proteins 
and cell apoptosis [29], the representative short form 
Homer, Homer1a, has been extensively studied as a 
dominant negative regulator for apoptosis. For example, 
Homer1a blocked tumor necrosis factor-a/cyclohex-
imide-induced apoptotic cell death via the mitogen-
activated protein kinase pathway in PC12 cells [13]. In 
retinal ganglion cells, retinal ischemia and reperfusion 
induced Homer1a expression, showing neuroprotective 
effects [12]. Knockdown of Homer1a reduced the cyto-
protective effect of Chikusetsu saponin IVa, which con-
trols the reactive oxygen species and intracellular Ca2+ 
homeostasis in cardiomyocytes [30]. Overexpression of 
Homer1a inhibited the PI3K/AKT/mTOR signaling path-
way, enhanced autophagy and cell viability of rat corti-
cal neurons [31]. Homer1a is upregulated in reactive 

astrocytes and protects astrocytes from apoptosis [11]. 
Additionally, upregulated Homer1a in astrocytes down-
regulated astrocytic glutamate release by precluding 
the mGluR5-mediated intracellular Ca2+ signaling [11]. 
In contrast, the long Homer1 isoform, Homer1b and c, 
have been reported as promoters of neuronal apoptosis 
via a Bax/Bcl-2-dependent pathway [32]. Furthermore, 
the other long Homer isoforms, Homer2a, has been 
shown to be involved in apoptosis of cultured endothe-
lial cells [33].These studies indicate that Homer proteins 
are associated with several signaling pathways related to 
apoptosis in neuronal and non-neuronal cells, and espe-
cially short Homer proteins may play an important role 
in protection from apoptotic cell death. In the present 
study, we addressed the possible role of Homer2e, which 
is induced via ischemic condition, disassembles postsyn-
aptic Homer-Shank-NMDAR clusters, attenuates excess 
calcium influx, and prevents apoptosis in CGCs (Fig. 6).

Long Homer proteins have two characteristic structural 
domains, the N-terminal EVH-1 domain and the Homer-
specific C-terminal domain, whereas short Homer pro-
teins lack the C-terminal domain [5]. The EVH-1 domain 
binds to the proline-rich amino acid sequence, Pro-Pro-
X-X-Phe, which is found in many target proteins includ-
ing the Shank protein family [34]. Shank proteins are 
scaffold postsynaptic proteins that directly or indirectly 
bind to several postsynaptic proteins including NMDAR, 
to tether them to specific postsynaptic sites [35]. The 
C-terminal domain of Homer consists of a coiled-coil 
structure followed by two leucine zipper motifs, which 
form homo- or heteromeric interactions between long 
Homers [1]. Because short Homers lacking the C-termi-
nal domain cannot interact with other Homer proteins, 
short Homer proteins are thought to act as dominant 
negative regulators of long Homer proteins, thereby 
affecting the distribution of postsynaptic proteins to alter 
the physiological functions of postsynapses. In fact, over-
expression of recombinant Homer1a decreased the clus-
ters of PSD95, NR1, and GluR2, a subunit of AMPA type 
glutamate receptor, and reduced NMDAR and AMPAR-
mediated postsynaptic currents [36]. Additionally, the 
activity-dependent expression of Homer1a induced rapid 
de-clustering of Homer1c as well as PSD95 and GluR2 
[37]. Although there is difference between Homer1 and 
2 in the cellular and regional expression pattern in the 
brain [15] and phenotypes of knockout mice [38], the 
short Homer2e may act as a natural dominant negative 
regulator of the long Homer2a/b. In the present study, we 
did not measure the protein expression level of Homer2e 
because lack of specific antibody. If Homer2e can act as 
a dominant negative of long Homer2, protein expression 
level of Homer2e should be considered. In addition, his-
torical publications reported that short Homer1a protein 
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Fig. 5  Identification of a new Homer2 variant, Homer2e, induced by ischemia in mouse cerebellum and by OGD in CGCs. A Upper, nested PCR 
of mouse cerebellum cDNA performed on the coding region of Homer2a. The first and the second PCR reactions are depicted as 1 and 2. In the 
second PCR, a small size band just underneath the major band was detected particularly in ischemic and OGD samples (arrow). Lower, RT-PCR 
detection of Homer2e in the cerebellum and CGCs. Homer2e increased in both ischemic cerebellum and OGD CGCs. Three individual animals 
(n = 3) and cultures (n = 3) were analyzed in each condition. B Comparison of the partial nucleotide and deduced amino acid sequences between 
Homer2a and Homer2e. C Comparison of exons between Homer2a/b and Homer2e. Exons 5 and 7–9 of Homer2a/b are lacking in Homer2e. 
Because the nucleotide deficits cause a frameshift, Homer2e encodes a potential protein of 174 amino acids, which lacks the C-terminal of 
Homer2a/b
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level is very low compared to the constitutively expressed 
Homers, even when mRNA induction is quite robust 
[39]. Therefore, it is possible that the protein expression 
level of induced Homer2e is also low compared with 
other constitutively expressed Homer2 isoforms. One 
of the possible explanations of how low-level expressed 
protein can act effectively as a dominant negative is their 
specific localization. Since Homer proteins are existing in 
postsynaptic site, if induced short Homers are accumu-
lated or locally translated at postsynaptic site, the local 
concentration of these short Homers can compete pre-
existing long Homers. Therefore, one of the possible and 
attractive roles of the short Homer2e may be the candi-
date protein associated with synaptic tagging as Homer1a 
[40]. The basal and induced protein expression level of 
Homer1a is known to be very low compared to the con-
stitutively expressed long Homers [39]; however, it can 
be act as a dominant negative in the specific postsynaptic 
site as synaptic tag.

In addition to the declustering of postsynaptic pro-
teins targeted to N-terminus domain of long Homer2, 
the proteins targeted to C-terminus domain of long 
Homer2 are also to be considered as the regulated pro-
teins by Homer2e. Cdc42 is known as a small GTPase 

of the Rho family, which modulates cell morphol-
ogy, migration, endocytosis and cell cycle [41], which 
binds C-terminus domain of Homer2a [26]. Since 
EVH-1 domain on Homer2a can bind Ophn-1 (GTPase 
activating protein) and beta-PIX (guanine nucleo-
tide exchange factor) [26], the disruption of the link 
between Ophn-1/beta-PIX and Cdc42 may affect actin 
polymerization and subsequent dendritic spine mor-
phology. However, it remains to be elucidated whether 
short Homer2e plays a role as a dominant negative reg-
ulator of the long Homer2 isoform.

In conclusion, our study showed that Homer2a is 
involved in the regulation of NMDAR currents and 
plays a role in NMDAR-mediated cell physiology 
including apoptosis. The novel short isoform, Homer2e, 
is induced under apoptotic conditions and possibly acts 
as a dominant negative regulator of the long form of 
Homer2, i.e., decreases the NMDAR currents, probably 
resulting in the repression of NMDAR-elicited excito-
toxicity and apoptosis. The harmonization between the 
long and short Homer isoforms in the developing cer-
ebellum may be crucial for fine physiological regulation 
of CGCs.

Fig. 6  Schematic diagram of Homer2a/2e and their possible role. A Schematic structure of Homer2a and 2e. Long Homer2a has EVH-1 domain 
in N-terminal and coiled-coil domain in C-terminal. Homer2e has only EVH-1 domain and lack of coiled-coil domain. B Schematic diagram of the 
possible role of Homer2a and 2e. Left: Long Homer2a multimerizes using their C-terminus coiled-coil domain and binds to Shank and Drebrin using 
their N-terminus EVH-1 domain to stabilize NMDAR at the postsynaptic site via GKAP, PSD95 and F-actin complex. Right: Ischemic condition induces 
Homer2e and it prevents the binding between Homer2a and Shank/Drebrin by takeover their EVH-1 binding sites, which enhances declustering of 
the protein complex including NMDAR in the postsynaptic site
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