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Abstract 

Aim:  Experimental animals, such as non-human primates (NHPs), mice, Zebrafish, and Drosophila, are frequently 
employed as models to gain insights into human physiology and pathology. In developmental neuroscience and 
related research fields, information about the similarities of developmental gene expression patterns between animal 
models and humans is vital to choose what animal models to employ. Here, we aimed to statistically compare the 
similarities of developmental changes of gene expression patterns in the brains of humans with those of animal mod-
els frequently used in the neuroscience field.

Methods:  The developmental gene expression datasets that we analyzed consist of the fold-changes and P values 
of gene expression in the brains of animals of various ages compared with those of the youngest postnatal animals 
available in the dataset. By employing the running Fisher algorithm in a bioinformatics platform, BaseSpace, we 
assessed similarities between the developmental changes of gene expression patterns in the human (Homo sapiens) 
hippocampus with those in the dentate gyrus (DG) of the rhesus monkey (Macaca mulatta), the DG of the mouse 
(Mus musculus), the whole brain of Zebrafish (Danio rerio), and the whole brain of Drosophila (D. melanogaster).

Results:  Among all possible comparisons of different ages and animals in developmental changes in gene 
expression patterns within the datasets, those between rhesus monkeys and mice were highly similar to those 
of humans with significant overlap P-value as assessed by the running Fisher algorithm. There was the highest 
degree of gene expression similarity between 40–59-year-old humans and 6–12-year-old rhesus monkeys (overlap 
P-value = 2.1 × 10− 72). The gene expression similarity between 20–39-year-old humans and 29-day-old mice was also 
significant (overlap P = 1.1 × 10− 44). Moreover, there was a similarity in developmental changes of gene expression 
patterns between 1–2-year-old Zebrafish and 40–59-year-old humans (Overlap P-value = 1.4 × 10− 6). The overlap 
P-value of developmental gene expression patterns between Drosophila and humans failed to reach significance 
(30 days Drosophila and 6–11-year-old humans; overlap P-value = 0.0614).
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The use of animal models is invaluable for elucidating the 
underlying mechanisms of human physiology and pathol-
ogy. Depending on many circumstances, such as the 
ethical requirements, the purpose of experiments, and 
efficiency of breeding, different species of experimental 
animals are employed for experiments. Among various 
types of animal models, non-human primates (NHPs) 
have the highest degree of genetic identity to humans, 
given their relatively recent evolutionary divergence from 
that of human beings [1, 2], and NHPs are employed in 
cases where primate-specific functions are the subject to 
study [3, 4], although the strictest ethical consideration is 
necessary. Mice also have similarities in gene expression 
patterns with humans [5]. They have advantages in rich 
genetic resources, their small size, ease of maintenance, 
and short life cycle, enabling the effective implementation 
of the diseases of humans [6–9]. Non-mammal animals, 
such as Zebrafish [10–17], and Drosophila [18–21], are 
also employed as experimental animals because of their 
technical advantages in maintenance, spatial requirements, 
fertility, genetic manipulation, and observation. In devel-
opmental neuroscience and the related fields using animal 
models, information about the developmental changes of 
the gene expression patterns in the brain of experimental 
animals and their correlation with human transcriptomics 
are important. Bakken et al. (2016) carried out a compre-
hensive transcriptional mapping of brain development in 
rhesus monkeys and compared the gene expression pat-
terns in the frontal cortex with human’s and rat’s. They 
estimated the number of overlapping gene expressions in 
development and suggested that the number of overlap-
ping genes between rhesus monkeys and humans was sig-
nificantly higher than that between rats and humans using 
non-parametric statistical tests [22]. Gerstein et al. (2014) 
compared transcriptome across distant species and discov-
ered that co-expression modules shared across humans, 
C-elegans, and Drosophila, many of which are enriched 
in developmental genes [23]. Howe et  al. (2013) investi-
gated genomic sequences between humans and Zebrafish 
and found that approximately 70 % of human genes have 
at least one obvious zebrafish orthologue [24]. However, 
quantitative information on the transcriptomic similarity 
across multiple species of animal models is still limited.

Here, using running Fisher analysis available in Bas-
eSpace correlation engine (Illumina, San Diego, CA), we 

evaluated the similarity of developmental transcriptomes 
across different species (Additional file 3). We employed 
“overlap P-values” calculated from fold changes of gene 
expression, the P-values of the fold changes of the indi-
vidual gene expressions, and their ranks [25]. This 
method allowed us to quantify the similarities in devel-
opmental changes of the gene expression pattern of 
brains between humans [26] and commonly-used animal 
models, consisting of rhesus monkeys [27], mice [28], 
Zebrafish [29], and Drosophila [21]. Dataset of the fold-
changes and the P-values of gene expression of human 
that we analyzed consist of those from infants to elderly 
(6–12 months old, 1–5, 6–11, 12–19, 20–39, 40–59, 
and over 60 years old) in comparison with 0–5 months 
old infants. Likewise, those of mice from young to adult 
stages up to 6 months old (11, 14, 17, 21, 25, 29 days, and 
6 months old) in comparison with young mice (8 days 
old), those of Zebrafish from the young to aged (Embry-
onic stage E5, E10, 3 months old, 1–2 years old) in com-
parison with E3, those of Drosophila from the 30 days old 
and the 60 days old in comparison with the 3 days old, 
were subjected to the present study.

We first compared the developmental gene expres-
sion changes between the human hippocampus [26] 
and the hippocampal DG of rhesus monkeys [27] 
available in BaseSpace. Among 21 combinations of 
the available datasets from different ages of humans 
and rhesus monkeys (Additional file  2: Table  S1), 
there was the highest degree of gene expression 
similarity between those of 40–59-year-old humans 
and 6–12-year-old rhesus monkeys (Fig.  1A, over-
lap P-value = 2.1 × 10− 72), with 546 genes altered 
in both humans and rhesus monkeys. 503 genes out 
of those genes showed the same directional change 
in expression and, of these genes, 148 genes were 
upregulated (Fig.  1A, magenta bar; P = 4.1 × 10− 41), 
and 355 were downregulated (Fig.  1A, blue bar: 
P = 1.2 × 10− 104). Likewise, we compared similari-
ties of the developmental gene expression changes of 
the human hippocampus [26] and hippocampal DG 
of mice that are available from Murano et  al. (2019) 
[28]. Among the 49 combinations of datasets from 
different ages of humans and mice (Additional file  2: 
Table  S1), the one between those of 20–39-year-old 
humans and 29-day old mice recorded the highest 

Conclusions:  These results indicate that the developmental gene expression changes in the brains of the rhesus 
monkey, mouse, and Zebrafish recapitulate, to a certain degree, those in humans. Our findings support the idea that 
these animal models are a valid tool for investigating the development of the brain in neurophysiological and neu-
ropsychiatric studies.
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degree of gene expression overlap (Fig.  1B, overlap 
P value = 1.1 × 10− 44; 1474 genes altered in both 
humans and mice). The same directional change 
in gene expression was observed in 1072 genes, of 
which 419 genes were upregulated (Fig.  1B, magenta 

bar; P = 5.2 × 10− 24) and 653 downregulated (Fig.  1B, 
blue bar; P = 1.1 × 10− 65). Among 56 combina-
tions of the datasets of the human hippocampus [26] 
and Zebrafish brain [29], 40-59-year-old humans 
and 1-2-year-old Zebrafish exhibited the highest 

A

C D

B

Fig. 1  Similarities in temporal transcriptomics between brains of human and experimental animals: rhesus monkey, mouse, Zebrafish, and 
Drosophila. A–D The representative combination, which resulted in the lowest overlap P-value among all the data from developmental stages 
in each animal dataset (also see Additional file 2: Table S1), is indicated.  Comparison of gene expression patterns in the human hippocampus of 
40–59-year-old adults compared with those of the hippocampal dentate gyrus of 6–12-year-old adult monkeys (A). The Venn diagram indicates 
that there were 546 common genes whose expression levels significantly changed with aging in both hippocampi of 40–59-year-old adults 
and hippocampal DG of 6–12-year-old adult monkeys, and the overlap P-value, as assessed by running Fisher analysis, was 2.1 × 10− 72. The right 
bar graphs indicate that, within the 546 common genes, the expression of 148genes increased and 355 genes decreased in both humans and 
monkeys (i.e., positive correlation); expression of 15 genes increased and decreased in humans and monkeys, respectively; and the expression 
of 28 genes decreased and increased in humans and monkeys, respectively (i.e., negative correlation). The overlap P-values of these different 
types of correlations are also indicated above the corresponding bar graph. Likewise, gene expression patterns in the human hippocampus of 
20–39-year-old adults compared with those of the hippocampal dentate gyrus of 29-day-old mice (B), gene expression patterns in the human 
hippocampus of 40–59-year-old adults compared with those of the brain of 1-2-year-old adult zebrafish (C), and gene expression patterns in the 
hippocampus of 6–11-year-old young humans compared with those of the 30-day old Drosophila brain (D), are indicated in the same manner with 
(A). DG dentate gyrus, E embryonic day, m.o. months old, yr year, d day
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degree of gene expression overlap (Fig.  1C, over-
lap P-value = 1.4 × 10− 6; 245 genes altered in both 
humans and Zebrafish). The same directional change 
in expression was observed in 161 genes, of which 40 
were upregulated (Fig. 1C, magenta bar; P = 0.003) and 
121 downregulated (Fig. 1C, blue bar; P = 7.7 × 10− 11). 
Finally, regarding the 14 combinations between the 
human hippocampus [26] and Drosophila brain [21] 
that we assessed, we identified the highest degree of 
gene expression overlap between those of 6–11-year-
old humans and 30  days Drosophila (Fig.  1D, over-
lap P-value = 0.0614), with 303 genes altered in both 
humans and Drosophila. The same directional change 
in expression occurred in 66 genes, of which 15 genes 
were upregulated (Fig.  1D, magenta bar; P = 0.1915) 
and 51 downregulated (Fig. 1D, blue bar; P = 0.9218).

We have confirmed that rhesus monkeys, mice, and 
Zebrafish, which belong to deuterostomes, have devel-
opmental changes of gene expression patterns that are 
significantly similar to those of humans. In contrast, 
the developmental changes of the gene expression pat-
tern of the brain of Drosophila, which belongs to pro-
tostomes, were not significantly correlated with those 
of humans. In Caenorhabditis elegans (C. elegans), 
which also belongs to protostomes, the developmental 
changes of the gene expression pattern of whole-body 
samples were weakly and negatively correlated with 
those of human brains (Additional file  1: Fig. S1 and 
Additional file 2: Table S6) [30]. Overall, the degrees of 
similarity between animal models and humans shown 
in this report tended to reflect their evolutionary dis-
tance from humans. It should be noted that we have 
conducted the analyses using publicly available data, 
of which subjected brain regions and developmental 
stages are not perfectly matched across the included 
species. For example, the sampling resolution and 
period of developmental stages differ across the ani-
mals, and the datasets of rhesus monkeys and mice 
do not contain the data from embryonic stages, while 
the datasets of humans and Zebrafish do. Also, the 
developmental transcriptomics data of C. elegans was 
obtained from whole-body, and so it is hard to directly 
compare its data with those from the other species 
evaluated in this study. Despite these limitations, this 
study indicates that gene expression patterns in rhesus 
monkeys, mice, and zebrafish match those in humans. 
These findings thus support the validity of these ani-
mal models for studying human brain development 
and development-related functions and dysfunctions.
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