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Abstract 

REM sleep behaviour disorder (RBD) can be an early non-motor symptom of Parkinson’s disease (PD) with pathology 
involving mainly the pontine nuclei. Beyond the brainstem, it is unclear if RBD patients comorbid with PD have more 
affected striatal dopamine denervation compared to PD patients unaffected by RBD (PD-RBD−). To elucidate this, we 
evaluated the availability of vesicular monoamine transporter 2 (VMAT2), an index of nigrostriatal dopamine innerva-
tion, in 15 PD patients with probable RBD (PD-RBD+), 15 PD-RBD−, and 15 age-matched healthy controls (HC) using 
[11C]DTBZ PET imaging. This technique measured VMAT2 availability within striatal regions of interest (ROI). A mixed 
effect model was used to compare the radioligand binding of VMAT2 between the three groups for each striatal 
ROI, while co-varying for sex, cognitive function and depression scores. Multiple regressions were also computed to 
predict clinical measures from group condition and VMAT2 binding within all ROIs explored. We observed a significant 
main effect of group condition on VMAT2 availability within the caudate, putamen, ventral striatum, globus pallidus, 
substantia nigra, and subthalamus. Specifically, our results revealed that PD-RBD+ had lower VMAT2 availability com-
pared to HC in all these regions except for the subthalamus and substantia nigra, while PD-RBD− was significantly 
lower than HC in all these regions. PD-RBD− showed a negative relationship between motor severity and VMAT2 
availability within the left caudate. Our findings reflect that both PD patient subgroups had similar denervation within 
the nigrostriatal pathway. There were no significant interactions detected between radioligand binding and clinical 
scores in PD-RBD+. Taken together, VMAT2 and striatal dopamine denervation in general may not be a significant 
contributor to the pathophysiology of RBD in PD patients. Future studies are encouraged to explore other underlying 
neural chemistry mechanisms contributing to RBD in PD patients.
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Introduction
Rapid eye movement (REM) sleep behaviour disorder 
(RBD) is a parasomnia characterized by the loss of nor-
mal skeletal muscle atonia during REM sleep [1]. This 
results in dream enacting behaviours that are often vio-
lent or aggressive in nature. Increasing evidence shows 
that the RBD pathology involves the pontine nuclei 

within the brainstem [2]. Studies have further shown a 
link between idiopathic RBD and alpha-synucleinopa-
thies such as Parkinson’s disease (PD) [3, 4]. RBD is one 
of the hallmark prodromal features that manifests as 
early as 20  years before official PD diagnosis in many 
patients [5]. The risk estimate of developing PD is 33% at 
5 years since RBD diagnosis. This risk sharply increases 
to 91% at 14 years [6]. This underscores the importance 
of RBD in PD pathology as it is a strong clinical predictor 
of PD and is co-morbid in nearly half of the PD patient 
population [6].
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At the time of PD diagnosis, there is already advanced 
degeneration within the nigrostriatal dopaminergic sys-
tem, with estimates of 50–70% dopaminergic terminal 
loss within the putamen based on a post-mortem study 
[7] and in vivo neuroimaging of early-stage PD patients 
with unilateral motor impairment [8]. In the prodromal 
phase between the time of RBD diagnosis and clinical 
manifestation of PD, there are multiple neuroimaging 
studies that show presynaptic striatal degeneration, par-
ticularly by indexing the dopamine transporter (DAT) 
density. DAT is a symporter primarily found on the 
presynaptic terminals of nigrostriatal neurons. It carries 
the function of clearing released dopamine from the syn-
aptic cleft back into the presynaptic terminals—thereby 
modulating dopaminergic transmission [9]. Neuroimag-
ing studies report consistent striatal DAT depletion in 
20–40% of polysomnography confirmed idiopathic RBD 
patients (i.e., without PD) relative to healthy controls, 
particularly within the putamen [6, 10–13]. The decline 
of striatal DAT has been demonstrated from healthy 
controls to sub-clinical RBD (REM sleep without atonia 
on polysomnography, but without abnormal nocturnal 
behaviours) to manifest RBD to PD [14, 15]. This wors-
ening pattern continues in a subset of PD patients with 
probable RBD where they show greater DAT depletion in 
the caudate and putamen compared to PD patients with-
out probable RBD [16, 17]. Consistently, another study 
by Arnaldi et al. (2015) showed DAT levels in the puta-
men progressively decreased from idiopathic RBD to PD 
without probable RBD to PD with probable RBD. Taken 
together, these studies implicated that DAT imaging may 
play a contributory role in detection of RBD and in PD 
patients with probable RBD.

In addition to measuring DAT density as an index for 
presynaptic dopaminergic integrity, quantification of 
the type 2 vesicular monoamine transporter (VMAT2) 
is another approach. VMAT2 is an integral membrane 
protein that is responsible for shuttling monoamine neu-
rotransmitters including dopamine from the cytosol to 
the synaptic vesicles [9]. Evidence shows that VMAT2 
is sensitive to changes in vesicular dopamine concentra-
tion [18]. However, its binding site was shown to be less 
sensitive to changes induced by medication or compen-
satory mechanisms associated with the loss of dopamin-
ergic neurons relative to DAT [19]. Hence, quantifying 
VMAT2 levels allow for a more accurate measurement of 
the dopaminergic terminal integrity compared to meas-
uring DAT levels [20]. VMAT2 can be measured with 
[11C]-dihydrotetrabenazine ([11C]DTBZ) or [18F]AV-133 
and both are reliable for in vivo imaging of VMAT2 den-
sity and distribution within the basal ganglia [9]. A recent 
study using [18F]AV-133 showed that probable RBD 
patients had reduced VMAT2 levels within the caudate 

nuclei and putamen relative to healthy controls [21]. 
Similar results were shown in a smaller older study using 
[11C]DTBZ where the authors observed reduced VMAT2 
availability in the posterior putamen in polysomnography 
confirmed RBD patients in relation to healthy controls 
[22]. As presented here, there are limited studies that 
focused on VMAT2 imaging, but these investigations 
indicate that VMAT2 imaging may also have a certain 
role in detecting RBDs.

In summary, while the literature seems to suggest an 
association of RBD with the presynaptic dopaminergic 
system, it remains unclear if PD patients with RBD have 
more extensive striatal dopamine denervation than PD 
patients without RBD. Furthermore, the characterization 
of VMAT2 has been rarely explored—especially in PD 
patients with RBD. By examining VMAT2 as an in  vivo 
molecular target with its unique properties, we aim to 
elucidate VMAT2 levels in PD patients who are comor-
bid with probable RBD. We achieved this by using [11C]
DTBZ PET imaging in PD patients with probable RBD 
and in PD patients without probable RBD, while hav-
ing age-matched healthy controls. We hypothesized that 
PD patients with probable RBD to show more exten-
sive dopamine denervation pathology, that is reduced 
VMAT2 availability, in striatal regions including the 
caudate, putamen, and ventral striatum relative to PD 
patients without probable RBD and healthy controls. 
This hypothesis would be consistent with reductions of 
the DAT observed in the striatal regions reported in PD 
patients with probable RBD.

Methods
Participants
A total of 45 participants were enrolled in this study: 15 
PD patients without probable RBD, 15 PD patients with 
probable RBD, and 15 age-matched healthy controls 
(Table  1). Some of the imaging, demographic, cognitive 
and psychological data from these participants have been 
reported previously [23, 24]. Both PD patient groups 
were diagnosed based on the UK Parkinson Disease Soci-
ety Brain Bank criteria. All participants had no evidence 
of other neurological or psychiatric conditions or any 
other medical conditions that precluded them from the 
PET and MR imaging. The severity of PD motor symp-
toms was tested through the Hoehn and Yahr Scale and 
the United Parkinson Disease Rating Scale (UPDRS-III) 
while patients were on medication. Levodopa equivalent 
daily dose (LEDD) calculation for each patient has been 
previously described by Evans et al. [25]. All participants 
were age-matched; and PD patients were matched for 
disease severity based on UPDRS-III score and LEDD.

PD patients were screened for RBD as part of their 
routine neurology clinic visits. This screening was done 
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prior to any imaging data collection, including patients 
reported previously by our group [23, 24]. Identifica-
tion of probable RBD symptoms was completed through 
using the informant-based response to the first question 
on the Mayo Sleep Questionnaire: “Have you ever seen 
the patient appear to act out his/her dreams while sleep-
ing.” Patients were classified as clinically probable RBD 
if the patients’ sleeping partner answered yes to this 
question [26]. This singular question has been validated 
against polysomnography, with a sensitivity of 98% and 
specificity of 74%, in a multicenter prospective cohort 
study of healthy older adults and suspected neurodegen-
erative disease [26, 27].

In order to prepare for the PET scan, PD patients per-
formed an overnight 12-h withdrawal from anti-parkin-
sonian medication to minimize the effect of medication 
during the scans while maintaining patient comfort and 
functioning [28]. To prevent excessive fatigue, the PET 
and structural MRI scans were completed on separate 
days. Montreal Cognitive Assessment (MoCA; [29]) and 
Beck Depression Inventory (BDI; [30] were obtained on 
all participants to assess general cognitive capabilities 
and depression levels, respectively. All participants pro-
vided informed written consent prior to beginning any 
imaging study procedures which were approved by the 
research ethics committees for the Centre of Addictions 
and Mental Health and the University Health Network of 
the University of Toronto.

Imaging acquisition
The preparation of the [11C]DTBZ radioligand was 
described previously [31]. PET scans were collected 
using a three-dimensional (3D) high resolution research 

tomograph (HRRT) scanner (Siemens, Knoxville, TN). 
This equipment allows the measurement of radioactiv-
ity in 207 brain slices, with a thickness of 1.22 mm each 
[23]. The detectors of the HRRT are a lutetium oxyor-
thosilicate/lutetium–yttrium oxyorthosilicate phos-
wich, with each crystal element measuring 2 × 2 × 10 
mm3. To minimize head motion, a customized thermo-
plastic facemask was provided to each participant prior 
to the HRRT PET scan, and the facemask was secured 
through the head-fixation system (Tru-Scan Imaging, 
Annapolis). After securing participants within the PET 
scanner, a transmission scan was first completed using 
a single photon point source, 137Cs (t1/2 = 30.2  years, 
Eγ = 662 keV), which had a duration of 6 min and 9  s. 
This transmission scan was immediately followed by the 
acquisition of the emission scan to correct for attenua-
tion (where frame durations were: 1 × background; 15 
frames × 60 s; and 15 frames × 300 s). Subsequently, the 
[11C]DTBZ radioligand was injected as a bolus into an 
intravenous line placed in the antecubital vein. Emis-
sion data were collected in list mode for 60 min while 
subjects were at rest.

The emission list mode data were re-binned into 
a series of 3D sinograms. The 3D sinograms were 
gap filled, scatter corrected and Fourier re-binned 
into 2-dimensional (2D) sinograms. The images were 
reconstructed from the 2D sinograms using a 2D fil-
tered-back projection algorithm. The reconstructed 
images had 256 × 256 × 207 cubic voxels that meas-
ured 1.22 × 1.22 × 1.22 mm3. The dynamic images were 
then reconstructed into 17 frames. The first frame was 
variable as it was dependent on the time between the 
start of acquisition and the introduction of the [11C]

Table 1  Demographic, behavioural, clinical and PET imaging characteristics of participants

BDI, Beck Depression Inventory; HC, healthy controls; LEDD, levodopa equivalent daily dose (calculated according to Evans et al. [25]); MoCA, Montreal Cognitive 
Assessment; PD-RBD+, PD patients with probable RBD; PD-RBD−, PD patients without probable RBD; UPDRS-III, Unified Parkinson’s Disease Rating Scale III
a Pearson Chi-Square

HC PD-RBD− PD-RBD+  p value

N (M:F) 15 (3:12) 15 (8:7) 15 (10:5) 0.03a

Age [years] ± SD (range) 67.1 ± 5.14 (58–79) 70.7 ± 5.67 (60–80) 68.1 ± 6.48 (56–80) 0.23

BDI ± SD 2.33 ± 1.29 3.00 ± 1.36 5.00 ± 4.32 0.03

MoCA ± SD 27.6 ± 2.13 24.93 ± 2.93 23.87 ± 3.24 0.002

Disease duration [years] ± SD – 7.20 ± 4.49 6.76 ± 3.67 0.77

UPDRS-III ± SD – 28.53 ± 17.18 23.87 ± 10.84 0.38

Hoehn and Yahr Score ± SD – 2.20 ± 0.41 2.13 ± 0.39 0.68

LEDD [mg] ± SD – 701.70 ± 522.04 723.45 ± 410.75 0.90

[11C]DTBZ dose [mCi] ± SD 9.54 ± 0.87 9.33 ± 0.59 9.72 ± 0.45 0.29

[11C]DTBZ mass [μg] ± SD 1.84 ± 1.78 1.28 ± 0.53 1.74 ± 1.31 0.48

[11C]DTBZ specific activity [mCi/
μmol] ± SD

2529.77 ± 1312.82 2658.75 ± 995.19 2319.78 ± 816.03 0.68
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DTBZ radioligand in the tomograph field of view. The 
following frames were defined as: 1 ×  ≥ 22  s, 4 × 60  s, 
3 × 120 s, 8 × 300 s, and 1 × 600 s.

To provide anatomical reference for the parametric 
PET image analysis and to rule out structural lesions, a 
whole-brain T1-weighted MR image was acquired from 
each participant using GE Signa HD × MRI system 
(GE Discovery MR750 3  T; T1-weighted images, fast 
spoiled gradient echo with repletion time = 6.7 ms, echo 
time = 3.0 ms, flip angle = 8 mm, slice thickness = 1 mm, 
number of excitations = 1, and matrix size = 256 × 192).

Imaging analysis
Image preprocessing was completed using an in-house 
software, Regions of Mental Interest (ROMI; [32]). This 
software was used to obtain the time activity curve 
(TAC) for the reference region—the occipital lobe—for 
all participants. ROMI used Statistical Parametric Map-
ping (SPM8, Welcome Department of Imaging Neurosci-
ence, London, UK), where each participant’s MR image 
was used to nonlinearly transform a standardized brain 
template (International Consortium for Brain Mapping/
Montreal Neurological Institute 152 MRI) with prede-
fined regions of interests (ROIs). The individual ROI tem-
plate underwent further refinement based on the gray 
matter probability of the segmented MRI. The refinement 
of each individual’s ROIs were then aligned and resliced 
using a normalized mutual information algorithm [33] to 
match the individuals PET scan. Subsequently, the TAC 
for the occipital lobe was obtained from the dynamic 
[11C]DTBZ PET image in the native space.

Upon the completion of the pre-registration procedure 
with ROMI, [11C]DTBZ PET parametric non-displacea-
ble binding potential (BPND) maps were generated in the 
native PET space with simplified reference tissue model 
[34] using the occipital cortex TAC value as reference 
region (obtained through ROMI). This was completed 
using Receptor Parametric Mapping software (RPM; 
[35]) within MATLAB R2015a (version 8.5.0.197613; 
MathWorks). Using SPM12 (version 7487) within MAT-
LAB, the parametric BPND images were transformed into 
standardized stereotaxic space using each participants’ 
individual MRI. These normalized images were then 
smoothed with a Gaussian function at 8  mm full width 
half-maximum.

The ROIs we examined were caudate, putamen, inter-
nal globus pallidus, external globus pallidus, substantia 
nigra, and subthalamus. These ROIs were obtained from 
the WFU-PickAtlas toolbox (http://​www.​fmri.​wfubmc.​
edu/​cms/​softw​are). In addition, we examined associative 
striatum, motor striatum, and ventral striatum—which 
were delineated according to previously specified crite-
ria [36]. These ROIs were transformed into a parametric 

[11C]DTBZ PET BPND map, and the BPND values were 
extracted using MATLAB based REX toolbox (http://​
web.​mit.​edu/​swg/​softw​are.​htm). We used the BPND val-
ues obtained through REX for each ROI for statistical 
analysis.

Statistical analysis
Demographic characteristics were tested for differ-
ences between the three groups (i.e., healthy controls, 
PD patients without probable RBD, and PD patients 
with probable RBD) using ANOVA. Specifically, we per-
formed ANOVA and Bonferroni post-hoc testing on age, 
MoCA score, BDI, UPDRS-III score, Hoehn and Yahr 
score, LEDD amount, quality and quantity of injected 
radioligand across all three participant groups. To assess 
for differences in sex proportions between groups, a chi-
squared analysis was performed. Statistical outliers was 
investigated using the interquartile range method [37].

Mixed effects model was used to compare the extracted 
[11C]DTBZ BPND between the three groups for each 
ROI. The fixed factors within the model were group (i.e., 
healthy controls, PD patients without probable RBD, 
and PD patients with probable RBD) and side (i.e., left 
vs. right ROI); the participants were kept as the random 
factor. The model also co-varied for sex, MoCA and BDI 
score. Post hoc independent sample t tests were used to 
assess for differences between groups and were corrected 
for multiple comparisons using the Bonferroni method.

Multiple regression analyses were used to correlate 
[11C]DTBZ BPND within each ROI against clinical meas-
ures including UPDRS-III score, Hoehn and Yahr score, 
LEDD amount, and disease duration while factoring 
patient group condition (i.e., PD patients with and with-
out probable RBD). This regression model included sex, 
MoCA and BDI as co-variates. All tests were completed 
using SPSS (version 21; Chicago, IL); and the alpha level 
was set to 0.05 as a cut-off to determine significance.

Results
The demographic, clinical and psychological character-
istics for each group are summarized in Table  1. There 
were no differences between all participant groups (i.e., 
healthy controls, PD patients without probable RBD, 
and PD patients with probable RBD) for age, radiotracer 
injected dose, injected mass, and specific activity. PD 
patients with and without probable RBD were compara-
ble in relation to their disease duration, UPDRS-III score, 
Hoehn and Yahr score, and LEDD amount. However, dif-
ferences were observed between groups for sex, MoCA, 
and BDI. These three variables were included as co-vari-
ates in subsequent analyses. There were no statistical out-
liers using the 1.5 interquartile range method.

http://www.fmri.wfubmc.edu/cms/software
http://www.fmri.wfubmc.edu/cms/software
http://web.mit.edu/swg/software.htm
http://web.mit.edu/swg/software.htm
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As there were main effects of MoCA [F(2, 42) = 7.29, 
p = 0.002] and BDI [F(2, 42) = 3.89, p = 0.028], we followed 
up with Bonferroni post hoc t-tests to detect where the 
group differences occurred. These particular results were 
reported previously by Valli et  al. [24]. In summary for 
BDI, patients with probable RBD had the highest depres-
sion score, then PD patients without probable RBD, then 
healthy controls. Only PD patients with probable RBD 
were statistically higher than healthy controls (t = − 2.68, 
p = 0.03). Regarding MoCA, in comparison to healthy 
controls, PD patients with probable RBD had the lowest 
cognitive score (t = 3.70, p = 0.003), followed by patients 
without probable RBD (t = 2.66, p = 0.0165). PD patients 
with probable RBD had relatively lower MoCA score 
compared to PD patients without probable RBD but this 
difference did not reach significance.

Results from the mixed effect model, co-varying for 
sex, MoCA and BDI score, revealed significant main 
effect of group on [11C]DTBZ binding within all ROIs 
explored: caudate [F(2, 39) = 10.6, p < 0.001], putamen [F(2, 

39) = 41.57, p < 0.001], associative striatum [F(2, 39) = 17.49, 
p < 0.001], motor striatum [F(2, 39) = 53.49, p < 0.001], 
ventral striatum [F(2, 39) = 7.42, p = 0.002], external glo-
bus pallidus [F(2, 39) = 29.17, p < 0.001], internal globus 
pallidus [F(2, 39) = 7.33, p = 0.002], substantia nigra [F(2, 

39) = 7.58, p = 0.002], and subthalamus [F(2, 39) = 4.61, 
p = 0.016]. Specifically, we found that the mean [11C]
DTBZ BPND of PD patients without probable RBD were 
lower than healthy controls for all these significant ROIs. 
Similarly, PD patients with probable RBD had reduced 
BPND compared to healthy controls for all these sig-
nificant ROIs except for the subthalamus and substantia 
nigra. Summary of the Bonferroni corrected post-hoc 
t-test results between PD patients without probable RBD 
versus healthy controls and PD patients with probable 
RBD versus healthy controls is displayed in Table 2. We 
were not able to detect statistical differences between PD 
patients with and without probable RBD for these signifi-
cant regions (Fig. 1). In summary, the significant findings 
from the mixed effects model was driven mainly by the 
differences between healthy controls and both PD sub-
groups, not the differences between PD patients with and 
without probable RBD.

Multiple regressions were computed to predict clinical 
measures (i.e., disease duration, UPDRS-III score, Hoehn 
and Yahr score, and LEDD amount) from group condi-
tion (i.e., PD patients with and without probable RBD), 
and [11C]DTBZ BPND of all basal ganglia ROIs explored, 
while covarying for sex, MoCA and BDI score. We were 
able to observe a significant interaction between left cau-
date BPND and group condition where these two meas-
ures predicted UPDRS-III score (F(1, 23) = 11.13, p = 0.003, 
R2 = 0.59). Figure 2 displays the interaction plot between 

left caudate BPND and UPDRS-III score where there 
is a steep negative correlation for PD patients without 
probable RBD. This relationship was not present for PD 
patients with probable RBD. No other significant interac-
tions were detected through the multiple regression anal-
yses between the BPND of the significant ROIs and group 
condition on clinical scores.

Discussion
This study aimed to characterize whether PD patients 
with probable RBD had more extensive striatal dopa-
mine denervation pathology relative to PD patients 
without RBD. We observed that both PD patient sub-
groups had lower tracer binding compared to healthy 
controls within the basal ganglia. There were no indica-
tions to show [11C]DTBZ binding differences between 
PD patients with and without probable RBD, which did 
not confirm our hypothesis. The reduced radioligand sig-
nal compared to healthy controls reflects lower VMAT2 
availability in both patient subgroups—which implies 
nigrostriatal denervation as a result of PD neurodegen-
eration. In the group of PD patients without probable 
RBD, there was a strong negative relationship between 
left caudate VMAT2 availability and UPDRS-III score. 
In other words, with the worsening of motor severity in 
patients without probable RBD, it correlated with more 
presynaptic denervation in the left caudate. However, this 
relationship was not present in PD patients with probable 
RBD.

The observed reduction of VMAT2 density as meas-
ured by [11C]DTBZ in our PD patient sample in the 

Table 2  Post-hoc t-test results looking at [11C]DTBZ BPND 
differences between PD-RBD− vs. healthy controls and 
PD-RBD+ vs. healthy controls

This table displays the Bonferroni corrected post-hoc t-test results for significant 
ROIs detected through the mixed effects model. Column A on the left displays 
results looking at [11C]DTBZ BPND differences between PD patients without 
probable RBD (PD-RBD−) and healthy controls. Column B on the right shows 
results between PD patients with probable RBD (PD-RBD+) and healthy controls

Basal ganglia ROIs (A) PD-RBD− vs 
healthy controls

(B) PD-RBD+ vs 
healthy controls

t value p value t value p value

Caudate 4.38  < 0.001 3.72 0.002

Putamen 8.44  < 0.001 7.76 0.001

Subthalamus 3.02 0.013 1.96 0.168

Ventral striatum 3.77 0.002 2.84 0.021

Associative striatum 5.59  < 0.001 4.84  < 0.001

Motor striatum 9.51  < 0.001 8.89  < 0.001

External globus pallidus 6.92  < 0.001 6.68  < 0.001

Internal globus pallidus 3.33 0.006 3.49 0.04

Substantia nigra 3.90 0.001 2.35 0.072
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putamen, caudate, substantia nigra, and globus pallidus 
relative to controls is consistent with previous neuro-
imaging studies of VMAT2 [8, 38–41]. This reinforces 
the notion that [11C]DTBZ PET imaging holds the 
potential to effectively differentiate PD patients from 
controls [42, 43]. The observed significant correlation 
between motor severity for PD patients and left caudate 

BPND was also consistent with previous studies in their 
sample of PD patients with no reports of other co-
morbidities [42, 43]. This relationship is in line with the 
view that motor disability in PD is primarily associated 
with impairment of subcortical structures within the 
nigrostriatal pathway [44]. In contrast, no significant 
interactions were observed between radiotracer bind-
ing and clinical measures in PD patients with probable 

Fig. 1  This figure displays the BPND differences between groups of healthy controls, PD patients without probable RBD (PD-RBD−), and PD patients 
with probable RBD (PD-RBD+) in all explored regions within the basal ganglia. All regions revealed to have significant main effect. [11C]DTBZ BPND 
represents the degree of VMAT2 availability. We found that BPND of PD-RBD− was reduced compared to healthy controls in all regions shown. This 
pattern was similarly seen for PD-RBD+ in relation to healthy controls for all regions except for the subthalamus and substantia nigra. *p < 0.05, 
Bonferroni corrected
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RBD, thus implying that other neurochemical abnor-
malities may account for this clinical complication.

Unlike previous DAT studies [15, 17, 45], we found no 
evidence of VMAT2 level differences between groups of 
PD patients with and without probable RBD. This obser-
vation is consistent with a previous investigation that 
used [11C]DTBZ PET imaging as a secondary focus to 
their study objectives in PD patients with and without 
probable RBD [46]. Specifically, they were unable to dif-
ferentiate VMAT2 levels of PD patients with probable 
RBD from PD patients without probable RBD within the 
caudate and putamen [46]. Our current study was differ-
ent from this previous study where we used age-matched 
healthy controls and explored more brain regions within 
the basal ganglia, beyond just the caudate and putamen. 
There are several possible reasons that could explain the 
lack of differences in VMAT2 levels between PD patients 
with and without probable RBD that we observed. 
VMAT2 has been demonstrated to be a stable marker 
for presynaptic nigrostriatal integrity as it is less prone to 
changes induced by medications or compensatory mech-
anisms associated with the loss of dopaminergic neurons 
[19]. Our findings reflect that VMAT2 remained unaf-
fected by the co-morbidity of probable RBD in conjunc-
tion with presynaptic changes associated with medication 
or compensatory mechanisms that would normally occur 
in PD [19]. This implies that the PD pathophysiology is 
the primary driving force depleting VMAT2 availability 
in both groups.

An alternative explanation may involve the relation-
ship between the activities and availability of VMAT2 
and DAT in the presynaptic terminals [47]. Previous lit-
erature has consistently shown that PD patients with 
probable RBD have lower DAT availability relative to PD 
patients and controls [15, 17, 45]. This observed reduc-
tion of DAT levels would in turn lower the neural ability 
to reuptake dopamine back into the presynaptic termi-
nals for vesicular repackaging and subsequent reutiliza-
tion [18, 48, 49]. The lower levels of presynaptic vesicles 
with dopamine should in turn result in a reduction of the 
VMAT2 levels in PD with probable RBD. However, this 
rationale was defied by the lack of differences in VMAT2 
levels between PD patients with and without probable 
RBD. It could be possible that there were varying endog-
enous intravesicular dopamine levels in PD patients with 
and without probable RBD that may have netted in neg-
ligible differences in BPND signalling between the two 
groups [18].

Previous literature shows other molecular structures 
and neurotransmitters that may play a larger role contrib-
uting to RBD in PD apart from DAT [15, 17, 45]. Outside 
the striatum, our group showed a negative relationship 
where D2 receptor availability within the uncus parahip-
pocampus decreased with increasing disease severity in 
PD patients with probable RBD relative to PD patients 
without probable RBD [24]. Other studies showed altered 
cholinergic [46] and noradrenaline levels [50], along with 
changes in glucose metabolic activity [16] in PD patients 
with probable RBD relative to patients without probable 
RBD, suggesting RBD pathophysiology in PD is multi-
systemic that impacts regions beyond the striatum and 
the dopaminergic system.

This study has some limitations to consider. Our 
patients were screened for probable RBD through the 
first question of the Mayo Sleep Questionnaire as part 
of their routine neurology clinic visit. These patients 
were not confirmed through the sleep polysomnography 
test. Despite this, the questionnaire has been validated 
in two studies. The first study validated the question-
naire against polysomnography in a multi-centre pro-
spective cohort trial that included patients suspected to 
have neurodegenerative disease and healthy older adults. 
This study achieved a sensitivity of 98% and specificity of 
74% [26]. A follow up validation study of the Mayo Sleep 
Questionnaire was carried out in a community-based 
sample of 128 participants who had underwent a previ-
ous polysomnography test, and resulted in a sensitivity of 
100% and specificity of 95% [27]. These evidences makes 
the sleep questionnaire a useful research tool in settings 
where polysomnography is not readily available [51].

Another limitation is that patients were assessed 
on several clinical measures while “ON” dopamine 

Fig. 2  This interaction plot is a result from the regression analysis. 
Patient group moderates the left caudate BPND in PD patients 
without probable RBD (PD-RBD−): as the UPDRS-III score increases, 
PD-RBD− patients have lower VMAT2 availability. However, this 
relationship is non-existent for PD patients with probable RBD 
(PD-RBD+). This figure was plotted using marginal means that 
accounted for the included co-variates: sex, MoCA and BDI. The grey 
band for each line represents the 95% confidence interval
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replacement therapy and they were “OFF” medication 
during the PET scan. In turn, the relationship between 
motor severity and dopaminergic degeneration within 
the basal ganglia may not be fully representative even 
though VMAT2 was shown to be less prone to medica-
tion influences [38]. Although we showed a relationship 
between nigrostriatal innervation and motor score in 
PD patients without probable RBD, investigating motor 
features while “ON” and “OFF” medication and changes 
with VMAT2 levels may provide more insight about the 
true relationship observed between PD with and without 
probable RBD and motor severity in relation to the left 
caudate VMAT2 availability.

Conclusion
In comparison to age-matched controls, the current 
study revealed that PD patients with and without prob-
able RBD had lower VMAT2 levels within the subcortical 
structures of the basal ganglia which reflects denervation 
within the nigrostriatal pathway. No significant interac-
tions were detected between the BPND and clinical scores 
in PD patients with probable RBD. These findings collec-
tively suggest that VMAT2 and striatal dopamine dener-
vation in general may not be a significant contributor to 
the pathophysiology of RBD in PD patients. Future stud-
ies are encouraged to explore other underlying neural 
chemistry mechanisms to better understand the driving 
force of RBD in PD patients.
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