Skip to main content
Fig. 2 | Molecular Brain

Fig. 2

From: Wnt3a upregulates brain-derived insulin by increasing NeuroD1 via Wnt/β-catenin signaling in the hypothalamus

Fig. 2

Wnt3a induces the expression of Ins2 by activating Wnt/β-catenin signaling. a N39 cells were treated with vehicle or Wnt3a (25 or 100 ng/mL) for 12 and 24 h. Active (Non-phospho) β-catenin and total β-catenin were detected using immunoblot assay. b and c The intensity of bands shown in (a) was quantified by using the ImageJ software with normalization to GAPDH (n = 6). d N39 cells were treated with vehicle or Wnt3a (100 ng/mL) for 24 h, and active β-catenin was examined by immunofluorescence analysis; Hoechst 33342 dye was used for nuclear staining. Scale bar, 20 μm. e N39 cells were treated with 1 μM BIO, a GSK3 inhibitor, for 12 h, and the level of Ins2 mRNA was measured by qRT-PCR (n = 9). f N39 cells were treated with vehicle (DMSO) or 1 μM BIO for 1, 3, 6, and 12 h to observe accumulation of active β-catenin and total β-catenin (n = 6). g and h Quantification of immunoblot data in (f) using the ImageJ software was performed with normalization to GAPDH. Data are means + SEM. **p < 0.01, ***p < 0.001 compared with vehicle treatment

Back to article page