Skip to main content
Fig. 2 | Molecular Brain

Fig. 2

From: SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model

Fig. 2

SE induced gene regulation requires SRF. a Microarray experiments were performed with hippocampal samples, harvested in heterozygous and Srf mutant mice 40 min after SE or without SE. b Heat-map of the 55 top-regulated genes with at least a four-fold induction when comparing heterozygous mice with and without SE. We used Srf mutant mice injected with pilocarpine (“+pilo”), either not reaching (“-SE”) or reaching SE (“+SE”) status. Here, pilocarpine induced gene regulation was clearly diminished as indicated by reduced ratio of fold induction between heterozygous SE and Srf mut SE. Those genes affected by SRF deficiency at least two-fold are highlighted in red. c All genes induced more than two-fold in the four data sets indicated were subjected to Venn diagram analysis. This identified a core gene set comprised of 28 genes (labeled in red) upregulated in mice with either a pilocarpine or kainic acid induced SE. d STRING analysis of the 55 top-regulated genes in heterozygous mice with SE (see b) and Srf. Many genes have reported interactions with each other and Egr1 and Fos emerged as nodes in this STRING network. Genes depicted in light red were regulated in an SRF dependent manner. e Overrepresentation analysis of transcription factor binding sites was performed with the 55 top-regulated genes (see b). Amongst the ten most strongly predicted TFs, CREB1, SRF and its downstream effector Egr1 were found

Back to article page