Silva AJ, Zhou Y, Rogerson T, Shobe J, Balaji J: Molecular and cellular approaches to memory allocation in neural circuits. Science. 2009, 326: 391-5. 10.1126/science.1174519.
PubMed Central
CAS
PubMed
Google Scholar
Kety SS: The biogenic amines in the central nervous system: their possible roles in arousal, emotion and learning. The neurosciences: second study program. Edited by: Schmidt FO. 1970, New York: Rockefeller Press, 324-335.
Google Scholar
Kandel ER: The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001, 294: 1030-1038. 10.1126/science.1067020.
CAS
PubMed
Google Scholar
Walling SG, Harley CW: Locus ceruleus activation initiates delayed synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel beta-adrenergic- and protein synthesis-dependent mammalian plasticity mechanism. Neurosci. 2004, 24: 598-604. 10.1523/JNEUROSCI.4426-03.2004.
CAS
Google Scholar
Cahill L, McGaugh JL: Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci. 1998, 21: 294-9. 10.1016/S0166-2236(97)01214-9.
CAS
PubMed
Google Scholar
McGaugh JL: The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci. 2004, 27: 1-28. 10.1146/annurev.neuro.27.070203.144157.
CAS
PubMed
Google Scholar
Crow TJ: Cortical synapses and reinforcement: a hypothesis. Nature. 1968, 219: 736-7. 10.1038/219736a0.
CAS
PubMed
Google Scholar
Izquierdo I, Medina JH: Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem. 1997, 68: 285-316. 10.1006/nlme.1997.3799.
CAS
PubMed
Google Scholar
Phelps EA, Sharot T: How (and why) emotion enhances the subjective sense of recollection. Current Directions in Psychological Science. 2008, 17: 147-152. 10.1111/j.1467-8721.2008.00565.x.
PubMed Central
PubMed
Google Scholar
LeDoux JE: Emotion circuits in the brain. Annu Rev Neurosci. 2000, 23: 155-184. 10.1146/annurev.neuro.23.1.155.
CAS
PubMed
Google Scholar
Davis M, Whalen PJ: The amygdala: vigilance and emotion. Mol Psychiatry. 2001, 6: 13-34. 10.1038/sj.mp.4000812.
CAS
PubMed
Google Scholar
Maren S, Quirk GJ: Neuronal signalling of fear memory. Nat Rev Neurosci. 2004, 5: 844-852. 10.1038/nrn1535.
CAS
PubMed
Google Scholar
McKernan MG, Shinnick-Gallagher P: Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature. 1997, 390: 607-611. 10.1038/37605.
CAS
PubMed
Google Scholar
Rogan MT, Staubli UV, LeDoux JE: Fear conditioning induces associative long-term potentiation in the amygdala. Nature. 1997, 390: 604-607. 10.1038/37601.
CAS
PubMed
Google Scholar
Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY: Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron. 2002, 34: 289-300. 10.1016/S0896-6273(02)00645-1.
CAS
PubMed
Google Scholar
Rumpel S, LeDoux J, Zador A, Malinow R: Postsynaptic receptor trafficking underlying a form of associative learning. Science. 2005, 308: 83-88. 10.1126/science.1103944.
CAS
PubMed
Google Scholar
Dityatev E, Bolshakov VY: Amygdala, LTP and fear conditioning. Neuroscientist. 2005, 11: 75-88. 10.1177/1073858404270857.
CAS
PubMed
Google Scholar
McGaugh JL, Cahill L, Roozendaal B: Involvement of the amygdala in memory storage: Interaction with other brain systems. Proc Natl Acad Sci USA. 1996, 93: 13508-13514. 10.1073/pnas.93.24.13508.
PubMed Central
CAS
PubMed
Google Scholar
Ferry B, McGaugh JL: Clenbuterol administration into the basolateral amygdala post training enhances retention in an inhibitory avoidance task. Neurobiol Learn Mem. 1999, 72: 8-12. 10.1006/nlme.1998.3904.
CAS
PubMed
Google Scholar
Power AE, Thal LJ, McGaugh JL: Lesions of the nucleus basalis magnocellularis induced by 192 IgC-saporin block memory enhancement with post-training norepinephrine in the basolateral amygdala. Proc Natl Acad Sci USA. 2002, 99: 2315-2319. 10.1073/pnas.022627799.
PubMed Central
CAS
PubMed
Google Scholar
LaLumiere RT, Buen TV, McGaugh JL: Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. Neurosci. 2003, 23: 6754-6758.
CAS
Google Scholar
Richter-Levin G, Akirav I: Emotional tagging of memory formation - in the search for neural mechanisms. Brain Res Brain Res Rev. 2003, 43: 247-56. 10.1016/j.brainresrev.2003.08.005.
PubMed
Google Scholar
Ikegaya Y, Nakanishi K, Saito H, Abe K: Amygdala beta-noradrenergic influence on hippocampal long-term potentiation in vivo. Neuroreport. 1997, 8: 3143-3146. 10.1097/00001756-199709290-00027.
CAS
PubMed
Google Scholar
McIntyre CK, Miyashita T, Setlow B, Marjon KD, Steward O, Guzowski JF, McGaugh JL: Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proc Natl Acad Sci USA. 2005, 102: 10718-10723. 10.1073/pnas.0504436102.
PubMed Central
CAS
PubMed
Google Scholar
McEchron MD, Green EJ, Winters RW, Nolen TG, Schneiderman N, McCabe PM: Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning. Neurosci. 1996, 16: 1273-1283.
CAS
Google Scholar
Han JH, Yiu AP, Cole CJ, Hsiang HL, Neve RL, Josselyn SA: Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn Mem. 2008, 15: 443-453. 10.1101/lm.993608.
PubMed Central
PubMed
Google Scholar
van Stegeren AH: The role of the noradrenergic system in emotional memory. Acta Psychol (Amst). 2008, 127: 532-41. 10.1016/j.actpsy.2007.10.004.
Google Scholar
Rodrigues SM, LeDoux JE, Sapolsky RM: The influence of stress hormones on fear circuitry. Annu Rev Neurosci. 2009, 32: 289-313. 10.1146/annurev.neuro.051508.135620.
CAS
PubMed
Google Scholar
Smythies J: Section III. The norepinephrine system. Int Rev Neurobiol. 2005, 64: 173-211. 10.1016/S0074-7742(05)64003-2.
PubMed
Google Scholar
Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993, 361: 31-9. 10.1038/361031a0.
CAS
PubMed
Google Scholar
Malenka RC, Nicoll RA: Long-term potentiation - a decade of progress?. Science. 1999, 285: 1870-4. 10.1126/science.285.5435.1870.
CAS
PubMed
Google Scholar
Martin SJ, Grimwood PD, Morris RG: Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000, 23: 649-711. 10.1146/annurev.neuro.23.1.649.
CAS
PubMed
Google Scholar
Coyle JT: Biochemical aspects of neurotransmission in the developing brain. Int Rev Neurobiol. 1977, 20: 65-103. full_text.
CAS
PubMed
Google Scholar
Casey RP, Njus D, Radda GK, Seeley J, Sehr PA: The biochemistry of the uptake, storage, and release of catecholamines. Horiz Biochem Biophys. 1977, 3: 224-56.
CAS
PubMed
Google Scholar
Wikberg JE: Adrenergic receptors: classification, ligand binding and molecular properties. Acta Med Scand Suppl. 1982, 665: 19-36.
CAS
PubMed
Google Scholar
Jones BE, Moore RY: Ascending projections of the locus coeruleus in the rat. Autoradiographic study. Brain Research. 1977, 127: 23-53. 10.1016/0006-8993(77)90378-X.
Google Scholar
Loizou LA: Projections of the nucleus locus coeruleus in the albino rat. Brain Res. 1969, 15: 563-6. 10.1016/0006-8993(69)90185-1.
CAS
PubMed
Google Scholar
McGaugh JL: Memory - a century of consolidation. Science. 2000, 287: 248-51. 10.1126/science.287.5451.248.
CAS
PubMed
Google Scholar
Gallvez R, Mesches M, McGaugh JL: Norepinephrine release in the amygdala in response to footshock stimulation. Neurobiol Learn Mem. 1996, 66: 253-257. 10.1006/nlme.1996.0067.
Google Scholar
Tanaka T, Yokoo H, Mizoguchi K, Yoshida M, Tsuda A, Tanaka M: Noradrenaline release in the rat amygdala is increased by stress: studies with intracerebral microdialysis. Brain Res. 1991, 544: 174-6. 10.1016/0006-8993(91)90902-8.
CAS
PubMed
Google Scholar
Rainbow TC, Parsons B, Wolfe BB: Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc Natl Acad Sci USA. 1984, 81: 1585-9. 10.1073/pnas.81.5.1585.
PubMed Central
CAS
PubMed
Google Scholar
Ordway GA, Gambarana C, Frazer A: Quantitative autoradiography of central beta adrenoceptor subtypes: comparison of the effects of chronic treatment with desipramine or centrally administered l-isoproterenol. Pharmacol Exp Ther. 1988, 247: 379-89.
CAS
Google Scholar
McIntyre CK, Hatfield T, McGaugh JL: Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats. Eur J Neurosci. 2002, 16: 1223-1226. 10.1046/j.1460-9568.2002.02188.x.
PubMed
Google Scholar
Gallagher M, Kapp BS, Musty RE, Driscoll PA: Memory formation: evidence for a specific neurochemical system in the amygdala. Science. 1977, 198: 423-425. 10.1126/science.20664.
CAS
PubMed
Google Scholar
Hatfield T, McGaugh JL: Norepinephrine infused into the basolateral amygdala post training enhances retention in a spatial water maze task. Neurobiol Learn Mem. 1999, 71: 232-239. 10.1006/nlme.1998.3875.
CAS
PubMed
Google Scholar
Schulz B, Fendt M, Schnitzler HU: Clonidine injections into the lateral nucleus of the amygdala block acquisition and expression of fear-potentiated startle. Eur J Neurosci. 2002, 15: 151-157. 10.1046/j.0953-816x.2001.01831.x.
PubMed
Google Scholar
Hatfield T, Spanis C, McGaugh JL: Response of amygdalar norepinephrine to footshock and GABAergic drugs using in vivo microdialysis and HPLC. Brain Res. 1999, 835: 340-345. 10.1016/S0006-8993(99)01566-8.
CAS
PubMed
Google Scholar
McGaugh JL, Introini-Collison IB, Cahill LF, Castellano C, Dalmaz C, Parent MB, Williams CL: Neuromodulatory systems and memory storage: role of the amygdala. Behav Brain Res. 1993, 58: 81-90. 10.1016/0166-4328(93)90092-5.
CAS
PubMed
Google Scholar
Cahill L, McGaugh JL: The neurobiology of memory for emotional events: adrenergic activation and the amygdala. Proc West Pharmacol Soc. 1996, 39: 81-4.
CAS
PubMed
Google Scholar
Liang KC, Juler RG, McGaugh JL: Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res. 1986, 368: 125-33. 10.1016/0006-8993(86)91049-8.
CAS
PubMed
Google Scholar
Nader K, Schafe GE, Le Doux JE: Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000, 406: 722-726. 10.1038/35021052.
CAS
PubMed
Google Scholar
Dudai Y: Reconsolidation: the advantage of being refocused. Curr Opin Neurobiol. 2006, 16: 174-8. 10.1016/j.conb.2006.03.010.
CAS
PubMed
Google Scholar
Przybyslawski J, Roullet P, Sara SJ: Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors. Neurosci. 1999, 19: 6623-8.
CAS
Google Scholar
Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA: A distinct role for norepinephrine in memory retrieval. Cell. 2004, 117: 131-43. 10.1016/S0092-8674(04)00259-4.
CAS
PubMed
Google Scholar
Debiec J, LeDoux JE: Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience. 2004, 129: 267-272. 10.1016/j.neuroscience.2004.08.018.
CAS
PubMed
Google Scholar
LaBar KS, Cabeza R: Cognitive neuroscience of emotional memory. Nat Rev Neurosci. 2006, 7: 54-64. 10.1038/nrn1825.
CAS
PubMed
Google Scholar
Cahill L, Prins B, Weber M, McGaugh JL: Beta-adrenergic activation and memory for emotional events. Nature. 1994, 371: 702-4. 10.1038/371702a0.
CAS
PubMed
Google Scholar
Segal SK, Cahill L: Endogenous noradrenergic activation and memory for emotional material in men and women. Psychoneuroendocrinology. 2009, 34: 1263-71. 10.1016/j.psyneuen.2009.04.020.
CAS
PubMed
Google Scholar
Strange BA, Dolan RJ: Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proc Natl Acad Sci USA. 2004, 101: 11454-8. 10.1073/pnas.0404282101.
PubMed Central
CAS
PubMed
Google Scholar
Strange BA, Hurlemann R, Dolan RJ: An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent. Proc Natl Acad Sci USA. 2003, 100: 13626-31. 10.1073/pnas.1635116100.
PubMed Central
CAS
PubMed
Google Scholar
van Stegeren AH, Goekoop R, Everaerd W, Scheltens P, Barkhof F, Kuijer JP, Rombouts SA: Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. Neuroimage. 2005, 24: 898-909. 10.1016/j.neuroimage.2004.09.011.
PubMed
Google Scholar
Sharot T, Delgado MR, Phelps EA: How emotion enhances the feeling of remembering. Nature Neurosci. 2004, 7: 1376-1380. 10.1038/nn1353.
CAS
PubMed
Google Scholar
Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L, Battey JF, Dulac C, Kandel ER, Bolshakov VY: Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell. 2002, 111: 905-918. 10.1016/S0092-8674(02)01116-9.
CAS
PubMed
Google Scholar
Kodirov SA, Takizawa S, Joseph J, Kandel ER, Shumyatsky GP, Bolshakov VY: Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc Natl Acad Sci USA. 2006, 103: 15218-15223. 10.1073/pnas.0607131103.
PubMed Central
CAS
PubMed
Google Scholar
Bissiere S, Humeau Y, Luthi A: Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci. 2003, 6: 587-592. 10.1038/nn1058.
CAS
PubMed
Google Scholar
Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E, Zakharenko SS, Joseph J, Vronskaya S, Yin D, Schubart UK, Kandel ER, Bolshakov VY: Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell. 2005, 123: 697-709. 10.1016/j.cell.2005.08.038.
CAS
PubMed
Google Scholar
Huang YY, Martin KC, Kandel ER: Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. Neurosci. 2000, 20: 6317-25.
CAS
Google Scholar
DeBock F, Kurz J, Azad SC, Parsons CG, Hapfelmeier G, Zieglgänsberger W, Rammes G: Alpha2-adrenoreceptor activation inhibits LTP and LTD in the basolateral amygdala: involvement of Gi/o-protein-mediated modulation of Ca2+-channels and inwardly rectifying K+-channels in LTD. Eur J Neurosci. 2003, 17: 1411-24. 10.1046/j.1460-9568.2003.02544.x.
CAS
PubMed
Google Scholar
Tully K, Li Y, Tsvetkov E, Bolshakov VY: Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc Natl Acad Sci USA. 2007, 104: 14146-50. 10.1073/pnas.0704621104.
PubMed Central
CAS
PubMed
Google Scholar
Faber ES, Sah P: Independent roles of calcium and voltage-dependent potassium currents in controlling spike frequency adaptation in lateral amygdala pyramidal neurons. Eur J Neurosci. 2005, 22: 1627-35. 10.1111/j.1460-9568.2005.04357.x.
PubMed
Google Scholar
Cathala L, Paupardin-Tritsch D: Effect of catecholamines on the hyperpolarization-activated cationic Ih and the inwardly rectifying potassium I(Kir) currents in the rat substantia nigra pars compacta. Eur J Neurosci. 1999, 11: 398-406. 10.1046/j.1460-9568.1999.00452.x.
CAS
PubMed
Google Scholar
Wang YF, Shibuya I, Kabashima N, Setiadji VS, Isse T, Ueta Y, Yamashita H: Inhibition of spontaneous inhibitory postsynaptic currents (IPSC) by noradrenaline in rat supraoptic neurons through presynaptic alpha2-adrenoceptors. Brain Res. 1998, 807: 61-9. 10.1016/S0006-8993(98)00732-X.
CAS
PubMed
Google Scholar
Ferry B, Magistretti PJ, Pralong E: Noradrenaline modulates glutamate-mediated neurotransmission in the rat basolateral amygdala in vitro. Eur J Neurosci. 1997, 9: 1356-64. 10.1111/j.1460-9568.1997.tb01490.x.
CAS
PubMed
Google Scholar
Andres ME, Bustos G, Gysling K: Regulation of [3H]norepinephrine release by N-methyl-D-aspartate receptors in minislices from the dentate gyrus and the CA1-CA3 area of the rat hippocampus. Biochem Pharmacol. 1993, 46: 1983-7. 10.1016/0006-2952(93)90640-I.
CAS
PubMed
Google Scholar
Hu H, Real E, Takamiya K, Kang MG, Ledoux J, Huganir RL, Malinow R: Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell. 2007, 131: 160-73. 10.1016/j.cell.2007.09.017.
CAS
PubMed
Google Scholar
Dahl D, Sarvey JM: Norepinephrine induces pathway-specific long-lasting potentiation and depression in the hippocampal dentate gyrus. Proc Natl Acad Sci USA. 1989, 86: 4776-80. 10.1073/pnas.86.12.4776.
PubMed Central
CAS
PubMed
Google Scholar
Segal M, Markram H, Richter-Levin G: Actions of norepinephrine in the rat hippocampus. Prog Brain Res. 1991, 88: 323-30. full_text.
CAS
PubMed
Google Scholar
Katsuki H, Izumi Y, Zorumski CF: Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. Neurophysiol. 1997, 77: 3013-20.
CAS
Google Scholar
Izumi Y, Zorumski CF: Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse. 1999, 31: 196-202. 10.1002/(SICI)1098-2396(19990301)31:3<196::AID-SYN4>3.0.CO;2-K.
CAS
PubMed
Google Scholar
Thomas MJ, Moody TD, Makhinson M, O'Dell TJ: Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron. 1996, 17: 475-82. 10.1016/S0896-6273(00)80179-8.
CAS
PubMed
Google Scholar
Yang HW, Lin YW, Yen CD, Min MY: Change in bi-directional plasticity at CA1 synapses in hippocampal slices taken from 6-hydroxydopamine-treated rats: the role of endogenous norepinephrine. Eur J Neurosci. 2002, 16: 1117-28. 10.1046/j.1460-9568.2002.02165.x.
PubMed
Google Scholar
Harley C: Noradrenergic and locus coeruleus modulation of the perforant path-evoked potential in rat dentate gyrus supports a role for the locus coeruleus in attentional and memorial processes. Prog Brain Res. 1991, 88: 307-21. full_text.
CAS
PubMed
Google Scholar
Walling SG, Nutt DJ, Lalies MD, Harley CW: Orexin-A infusion in the locus ceruleus triggers norepinephrine (NE) release and NE-induced long-term potentiation in the dentate gyrus. Neurosci. 2004, 24: 7421-6. 10.1523/JNEUROSCI.1587-04.2004.
CAS
Google Scholar
Harley CW: Norepinephrine and the dentate gyrus. Prog Brain Res. 2007, 163: 299-318. full_text.
CAS
PubMed
Google Scholar
Winder DG, Martin KC, Muzzio IA, Rohrer D, Chruscinski A, Kobilka B, Kandel ER: ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron. 1999, 24: 715-26. 10.1016/S0896-6273(00)81124-1.
CAS
PubMed
Google Scholar
Watabe AM, Zaki PA, O'Dell TJ: Coactivation of beta-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. Neurosci. 2000, 20: 5924-31.
CAS
Google Scholar
Gelinas JN, Nguyen PV: Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. Neurosci. 2005, 25: 3294-303. 10.1523/JNEUROSCI.4175-04.2005.
CAS
Google Scholar
Carey MR, Regehr WG: Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron. 2009, 62: 112-22. 10.1016/j.neuron.2009.02.022.
PubMed Central
CAS
PubMed
Google Scholar
Kirkwood A, Rozas C, Kirkwood J, Perez F, Bear MF: Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. Neurosci. 1999, 19: 1599-609.
CAS
Google Scholar
Komatsu Y, Yoshimura Y: Activity-dependent maintenance of long-term potentiation at visual cortical inhibitory synapses. Neurosci. 2000, 20: 7539-46.
CAS
Google Scholar
Delaney AJ, Crane JW, Sah P: Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron. 2007, 56: 880-92. 10.1016/j.neuron.2007.10.022.
CAS
PubMed
Google Scholar
Miyazaki T, Kobayashi H, Tosaka T: Presynaptic inhibition by noradrenaline of the EPSC evoked in neonatal rat sympathetic preganglionic neurons. Brain Res. 1998, 790: 170-7. 10.1016/S0006-8993(97)01549-7.
CAS
PubMed
Google Scholar
Forray MI, Bustos G, Gysling K: Noradrenaline inhibits glutamate release in the rat bed nucleus of the stria terminalis: in vivo microdialysis studies. Neurosci Res. 1999, 55: 311-20. 10.1002/(SICI)1097-4547(19990201)55:3<311::AID-JNR6>3.0.CO;2-E.
CAS
Google Scholar
Leao RM, Von Gersdorff H: Noradrenaline increases high-frequency firing at the calyx of held synapse during development by inhibiting glutamate release. Neurophysiol. 2002, 87: 2297-306.
CAS
Google Scholar
Brown RA, Walling SG, Milway JS, Harley CW: Locus ceruleus activation suppresses feedforward interneurons and reduces beta-gamma electroencephalogram frequencies while it enhances theta frequencies in rat dentate gyrus. Neurosci. 2005, 25: 1985-91. 10.1523/JNEUROSCI.4307-04.2005.
CAS
Google Scholar
Alreja M, Liu W: Noradrenaline induces IPSCs in rat medial septal/diagonal band neurons: involvement of septohippocampal GABAergic neurons. Physiol. 1996, 494 (Pt 1): 201-15.
CAS
Google Scholar
Baba H, Goldstein PA, Okamoto M, Kohno T, Ataka T, Yoshimura M, Shimoji K: Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 2): effects on somatodendritic sites of GABAergic neurons. Anesthesiology. 2000, 92: 485-92. 10.1097/00000542-200002000-00031.
CAS
PubMed
Google Scholar
Bergles DE, Doze VA, Madison DV, Smith SJ: Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. Neurosci. 1996, 16: 572-85.
CAS
Google Scholar
Cheun JE, Yeh HH: Noradrenergic potentiation of cerebellar Purkinje cell responses to GABA: cyclic AMP as intracellular intermediary. Neuroscience. 1996, 74: 835-44. 10.1016/0306-4522(96)00130-3.
CAS
PubMed
Google Scholar
Han SK, Chong W, Li LH, Lee IS, Murase K, Ryu PD: Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus. Neurophysiol. 2002, 87: 2287-96.
CAS
Google Scholar
Sigurdsson T, Doyere V, Cain CK, LeDoux JE: Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology. 2007, 52: 215-27. 10.1016/j.neuropharm.2006.06.022.
CAS
PubMed
Google Scholar
Comments
View archived comments (1)