Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat. 1995;8(6):429–31.
Article
CAS
PubMed
Google Scholar
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120(3):885–90.
Article
CAS
PubMed
Google Scholar
Glenner GG, Wong CW. Alzheimer‘s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984;122(3):1131–5.
Article
CAS
PubMed
Google Scholar
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985;82(12):4245–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A. 1988;85(11):4051–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83(13):4913–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ihara Y, Nukina N, Miura R, Ogawara M. Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem. 1986;99(6):1807–10.
Article
CAS
PubMed
Google Scholar
Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986;83(11):4044–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12(10):383–8.
Article
CAS
PubMed
Google Scholar
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.
Article
CAS
PubMed
Google Scholar
Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S et al. Eta-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature. 2015;526(7573):443–7. doi:doi:10.1038/nature14864.
DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.
Article
CAS
PubMed
Google Scholar
Scheff SW, DeKosky ST, Price DA. Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging. 1990;11(1):29–37.
Article
CAS
PubMed
Google Scholar
Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology. 2007;68(18):1501–8.
Article
CAS
PubMed
Google Scholar
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572–80.
Article
CAS
PubMed
Google Scholar
Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology. 1993;43(1):192–7.
Article
CAS
PubMed
Google Scholar
Moolman DL, Vitolo OV, Vonsattel JP, Shelanski ML. Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol. 2004;33(3):377–87.
Article
CAS
PubMed
Google Scholar
Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL et al. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci. 2004;24(45):10191–200.
Article
CAS
PubMed
Google Scholar
Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998;95(11):6448–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416(6880):535–9.
Article
CAS
PubMed
Google Scholar
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009;62(6):788–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcello E, Epis R, Di Luca M. Amyloid flirting with synaptic failure: towards a comprehensive view of Alzheimer’s disease pathogenesis. Eur J Pharmacol. 2008;585(1):109–18.
Article
CAS
PubMed
Google Scholar
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci. 2002;3(11):862–72.
Article
CAS
PubMed
Google Scholar
Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 2008;31(9):454–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE Beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci. 1992;12(2):376–89.
CAS
PubMed
Google Scholar
Demuro A, Parker I, Stutzmann GE. Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem. 2010;285(17):12463–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell. 2005;123(5):849–60.
Article
CAS
PubMed
Google Scholar
Hanson PI, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601.
Article
CAS
PubMed
Google Scholar
Bronstein J, Nishimura R, Lasher R, Cole R, de Vellis J, Farber D et al. Calmodulin kinase II in pure cultured astrocytes. J Neurochem. 1988;50(1):45–9.
Article
CAS
PubMed
Google Scholar
Liu XB, Jones EG. Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc Natl Acad Sci U S A. 1996;93(14):7332–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamsa K, Irvine EE, Giese KP, Kullmann DM. NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. J Physiol. 2007;584(Pt 3):885–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fink CC, Bayer KU, Myers JW, Ferrell JE, Jr., Schulman H, Meyer T. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron. 2003;39(2):283–97.
Article
CAS
PubMed
Google Scholar
Okamoto K, Bosch M, Hayashi Y. The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology. 2009;24:357–66.
Article
CAS
PubMed
Google Scholar
Yamagata Y, Kobayashi S, Umeda T, Inoue A, Sakagami H, Fukaya M et al. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning. J Neurosci. 2009;29(23):7607–18.
Article
CAS
PubMed
Google Scholar
Hell JW. CaMKII: claiming center stage in postsynaptic function and organization. Neuron. 2014;81(2):249–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borgesius NZ, van Woerden GM, Buitendijk GH, Keijzer N, Jaarsma D, Hoogenraad CC et al. BetaCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting alphaCaMKII to synapses. J Neurosci. 2011;31(28):10141–8.
Article
CAS
PubMed
Google Scholar
Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 2009;458(7236):299–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irvine EE, von Hertzen LS, Plattner F, Giese KP AlphaCaMKII autophosphorylation: a fast track to memory. Trends Neurosci. 2006;29(8):459–65.
Article
CAS
PubMed
Google Scholar
Lengyel I, Voss K, Cammarota M, Bradshaw K, Brent V, Murphy KP et al. Autonomous activity of CaMKII is only transiently increased following the induction of long-term potentiation in the rat hippocampus. Eur J Neurosci. 2004;20(11):3063–72.
Article
CAS
PubMed
Google Scholar
Giese KP, Fedorov NB, Filipkowski RK, Silva AJ Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279(5352):870–3.
Article
CAS
PubMed
Google Scholar
Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N, Moraes MF et al. Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci U S A. 2011;108(45):18471–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Irvine EE, Danhiez A, Radwanska K, Nassim C, Lucchesi W, Godaux E et al. Properties of contextual memory formed in the absence of alphaCaMKII autophosphorylation. Mol Brain. 2011;4:8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M et al. Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J Physiol. 2006;574(Pt 3):805–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Need AC, Giese KP. Handling and environmental enrichment do not rescue learning and memory impairments in alphaCamKII(T286A) mutant mice. Genes Brain Behav. 2003;2(3):132–9.
Article
CAS
PubMed
Google Scholar
Lucchesi W, Mizuno K, Giese KP. Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull. 2011;85(1-2):2–8.
Article
CAS
PubMed
Google Scholar
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.
Article
CAS
PubMed
Google Scholar
Amada N, Aihara K, Ravid R, Horie M Reduction of NR1 and phosphorylated Ca2+/calmodulin-dependent protein kinase II levels in Alzheimer’s disease. Neuroreport. 2005;16(16):1809–13.
Article
CAS
PubMed
Google Scholar
Tannenberg RK, Scott HL, Tannenberg AE, Dodd PR Selective loss of synaptic proteins in Alzheimer’s disease: evidence for an increased severity with APOE varepsilon4. Neurochem Int. 2006;49(7):631–9.
Article
CAS
PubMed
Google Scholar
McKee AC, Kosik KS, Kennedy MB, Kowall NW Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J Neuropathol Exp Neurol. 1990;49(1):49–63.
Article
CAS
PubMed
Google Scholar
Wang YJ, Chen GH, Hu XY, Lu YP, Zhou JN, Liu RY. The expression of calcium/calmodulin-dependent protein kinase II-alpha in the hippocampus of patients with Alzheimer’s disease and its links with AD-related pathology. Brain Res. 2005;1031(1):101–8.
Article
CAS
PubMed
Google Scholar
Ferrer I, Blanco R, Carmona M, Puig B. Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm. 2001;108(12):1397–415.
Article
CAS
PubMed
Google Scholar
Simonian NA, Elvhage T, Czernik AJ, Greengard P, Hyman BT Calcium/calmodulin-dependent protein kinase II immunostaining is preserved in Alzheimer’s disease hippocampal neurons. Brain Res. 1994;657(1-2):294–9.
Article
CAS
PubMed
Google Scholar
West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet. 1994;344(8925):769–72.
Article
CAS
PubMed
Google Scholar
Mah VH, Eskin TA, Kazee AM, Lapham L, Higgins GA. In situ hybridization of calcium/calmodulin dependent protein kinase II and tau mRNAs; species differences and relative preservation in Alzheimer’s disease. Brain Res Mol Brain Res. 1992;12(1-3):85–94.
Article
CAS
PubMed
Google Scholar
Murray KD, Gall CM, Jones EG, Isackson PJ. Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer’s disease. Neuroscience. 1994;60(1):37–48.
Article
CAS
PubMed
Google Scholar
Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Ramsey K et al. Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genomics. 2008;33(2):240–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solomon B, Koppel R, Jossiphov J. Immunostaining of calmodulin and aluminium in Alzheimer’s disease-affected brains. Brain Res Bull. 2001;55(2):253–6.
Article
CAS
PubMed
Google Scholar
Reese LC, Laezza F, Woltjer R, Taglialatela G. Dysregulated phosphorylation of Ca(2+) /calmodulin-dependent protein kinase II-alpha in the hippocampus of subjects with mild cognitive impairment and Alzheimer’s disease. J Neurochem. 2011;119(4):791–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavazzin C, Bonvicini C, Nocera A, Racchi M, Kasahara J, Tardito D et al. Expression and phosphorylation of delta-CaM kinase II in cultured Alzheimer fibroblasts. Neurobiol Aging. 2004;25(9):1187–96.
Article
CAS
PubMed
Google Scholar
Esteras N, Munoz U, Alquezar C, Bartolome F, Bermejo-Pareja F, Martin-Requero A Altered calmodulin degradation and signaling in non-neuronal cells from Alzheimer’s disease patients. Curr Alzheimer Res. 2012;9(3):267–77.
Article
CAS
PubMed
Google Scholar
Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17(5):661–3.
Article
CAS
PubMed
Google Scholar
Gu Z, Liu W, Yan Z. {beta}-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J Biol Chem. 2009;284(16):10639–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang DM, Yang YJ, Zhang L, Zhang X, Guan FF, Zhang LF et al. The alterations of Ca2+/calmodulin/CaMKII/CaV1.2 signaling in experimental models of Alzheimer’s disease and vascular dementia. Neurosci Lett. 2013;538:60–5.
Article
PubMed
Google Scholar
Wang DM, Yang YJ, Zhang L, Zhang X, Guan FF, Zhang LF Naringin Enhances CaMKII Activity and Improves Long-Term Memory in a Mouse Model of Alzheimer’s Disease. Int J Mol Sci. 2013;14(3):5576–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem. 2007;282(46):33305–12.
Article
CAS
PubMed
Google Scholar
Anekonda TS, Quinn JF, Harris C, Frahler K, Wadsworth TL, Woltjer RL. L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol Dis. 2011;41(1):62–70.
Article
CAS
PubMed
Google Scholar
Yasuda H, Barth AL, Stellwagen D, Malenka RC. A developmental switch in the signaling cascades for LTP induction. Nat Neurosci. 2003;6(1):15–6.
Article
CAS
PubMed
Google Scholar
Cooke SF, Bliss TV. Plasticity in the human central nervous system. Brain. 2006;129(Pt 7):1659–73.
Article
CAS
PubMed
Google Scholar
Jiang X, Chai GS, Wang ZH, Hu Y, Li XG, Ma ZW et al. Spatial training preserves associative memory capacity with augmentation of dendrite ramification and spine generation in Tg2576 mice. Sci Rep. 2015;5:9488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao D, Watson JB, Xie CW. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol. 2004;92(5):2853–8.
Article
CAS
PubMed
Google Scholar
Zeng Y, Zhao D, Xie CW. Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis. 2010;21(3):823–31.
CAS
PubMed
PubMed Central
Google Scholar
Gandy S, Czernik AJ, Greengard P. Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 1988;85(16):6218–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y et al. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol. 2003;163(1):83–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramelot TA, Nicholson LK. Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J Mol Biol. 2001;307(3):871–84.
Article
CAS
PubMed
Google Scholar
Vieira SI, Rebelo S, Esselmann H, Wiltfang J, Lah J, Lane R et al. Retrieval of the Alzheimer’s amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated. Mol Neurodegener. 2010;5:40.
Article
PubMed
PubMed Central
Google Scholar
Hanger DP, Betts JC, Loviny TL, Blackstock WP, Anderton BH. New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer’s disease brain using nanoelectrospray mass spectrometry. J Neurochem. 1998;71(6):2465–76.
Article
CAS
PubMed
Google Scholar
Xiao J, Perry G, Troncoso J, Monteiro MJ. Alpha-calcium-calmodulin-dependent kinase II is associated with paired helical filaments of Alzheimer’s disease. J Neuropathol Exp Neurol. 1996;55(9):954–63.
Article
CAS
PubMed
Google Scholar
Yamamoto H, Hiragami Y, Murayama M, Ishizuka K, Kawahara M, Takashima A. Phosphorylation of tau at serine 416 by Ca2+/calmodulin-dependent protein kinase II in neuronal soma in brain. J Neurochem. 2005;94(5):1438–47.
Article
CAS
PubMed
Google Scholar
Yoshimura Y, Ichinose T, Yamauchi T. Phosphorylation of tau protein to sites found in Alzheimer’s disease brain is catalyzed by Ca2+/calmodulin-dependent protein kinase II as demonstrated tandem mass spectrometry. Neurosci Lett. 2003;353(3):185–8.
Article
CAS
PubMed
Google Scholar
Baudier J, Cole RD. Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J Biol Chem. 1987;262(36):17577–83.
CAS
PubMed
Google Scholar
Steiner B, Mandelkow EM, Biernat J, Gustke N, Meyer HE, Schmidt B et al. Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2(+)-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 1990;9(11):3539–44.
CAS
PubMed
PubMed Central
Google Scholar
Hagestedt T, Lichtenberg B, Wille H, Mandelkow EM, Mandelkow E. Tau protein becomes long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol. 1989;109(4 Pt 1):1643–51.
Article
CAS
PubMed
Google Scholar
Singh TJ, Wang JZ, Novak M, Kontzekova E, Grundke-Iqbal I, Iqbal K. Calcium/calmodulin-dependent protein kinase II phosphorylates tau at Ser-262 but only partially inhibits its binding to microtubules. FEBS Lett. 1996;387(2-3):145–8.
Article
CAS
PubMed
Google Scholar
Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys. 1998;357(2):299–309.
Article
CAS
PubMed
Google Scholar
Wang JZ, Grundke-Iqbal I, Iqbal K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci. 2007;25(1):59–68.
Article
PubMed
PubMed Central
Google Scholar
Gardoni F, Schrama LH, Kamal A, Gispen WH, Cattabeni F, Di Luca M. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci. 2001;21(5):1501–9.
CAS
PubMed
Google Scholar
Gardoni F, Bellone C, Viviani B, Marinovich M, Meli E, Pellegrini-Giampietro DE et al. Lack of PSD-95 drives hippocampal neuronal cell death through activation of an alpha CaMKII transduction pathway. Eur J Neurosci. 2002;16(5):777–86.
Article
PubMed
Google Scholar
Ashpole NM, Song W, Brustovetsky T, Engleman EA, Brustovetsky N, Cummins TR et al. Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling and hyperexcitability. J Biol Chem. 2012;287(11):8495–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bok J, Wang Q, Huang J, Green SH CaMKII and CaMKIV mediate distinct prosurvival signaling pathways in response to depolarization in neurons. Mol Cell Neurosci. 2007;36(1):13–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Churn SB, Limbrick D, Sombati S, DeLorenzo RJ. Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons. J Neurosci. 1995;15(4):3200–14.
CAS
PubMed
Google Scholar
Lin KF, Chang RC, Suen KC, So KF, Hugon J Modulation of calcium/calmodulin kinase-II provides partial neuroprotection against beta-amyloid peptide toxicity. Eur J Neurosci. 2004;19(8):2047–55.
Article
PubMed
Google Scholar
Pike CJ, Balazs R, Cotman CW. Attenuation of beta-amyloid neurotoxicity in vitro by potassium-induced depolarization. J Neurochem. 1996;67(4):1774–7.
Article
CAS
PubMed
Google Scholar
Kim K, Lakhanpal G, Lu HE, Khan M, Suzuki A, Kato-Hayashi M et al. A Temporary Gating of Actin Remodeling during Synaptic Plasticity Consists of the Interplay between the Kinase and Structural Functions of CaMKII. Neuron. 2015;87(4):813–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma H, Li B, Tsien RW. Distinct roles of multiple isoforms of CaMKII in signaling to the nucleus. Biochim Biophys Acta. 2015;1853(9):1953–7.
Article
CAS
PubMed
PubMed Central
Google Scholar