Gonzalez RG, Cheng LL, Westmoreland SV, Sakaie KE, Becerra LR, Lee PL, et al. Early brain injury in the SIV-macaque model of AIDS. AIDS. 2000;14(18):2841–9.
Article
CAS
PubMed
Google Scholar
Gray F, Lescs MC, Keohane C, Paraire F, Marc B, Durigon M, et al. Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol. 1992;51(2):177–85.
Article
CAS
PubMed
Google Scholar
Chiodi F, Sönnerborg A, Albert J, Gaines H, Norkrans G, Hagberg L, et al. Human immunodeficiency virus infection of the brain. J Neurol Sci. 1988;85(3):245–57. doi:10.1016/0022-510x(88)90184-0.
Article
CAS
PubMed
Google Scholar
Peluso R, Haase A, Stowring L, Edwards M, Ventura P. A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology. 1985;147(1):231–6.
Article
CAS
PubMed
Google Scholar
Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006;26(4):1098–106. doi:10.1523/JNEUROSCI.3863-05.2006.
Article
CAS
PubMed
Google Scholar
Webster NL, Crowe SM. Matrix metalloproteinases, their production by monocytes and macrophages and their potential role in HIV-related diseases. J Leukoc Biol. 2006;80(5):1052–66. doi:10.1189/jlb.0306152.
Article
CAS
PubMed
Google Scholar
Williams DW, Eugenin EA, Calderon TM, Berman JW. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol. 2012;91(3):401–15. doi:10.1189/jlb.0811394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A. 1998;95(6):3117–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nath A, Geiger J. Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog Neurobiol. 1998;54(1):19–33.
Article
CAS
PubMed
Google Scholar
Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 2002;186 Suppl 2:S193–8. doi:10.1086/344528.
Article
CAS
PubMed
Google Scholar
Sagar V, Pilakka-Kanthikeel S, Pottathil R, Saxena SK, Nair M. Towards nanomedicines for neuroAIDS. Rev Med Virol. 2014;24(2):103–24. doi:10.1002/rmv.1778.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G. gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem. 2000;74(6):2373–9.
Article
CAS
PubMed
Google Scholar
Kaul M, Lipton SA. The NMDA Receptor-Its Role in Neuronal Apoptosis and HIV-Associated Dementia. NeuroAIDS. 2000;3(6). http://aidscience.org/neuroaids/zones/articles/2000/11/NMDA/.
Walsh KA, Megyesi JF, Wilson JX, Crukley J, Laubach VE, Hammond RR. Antioxidant protection from HIV-1 gp120-induced neuroglial toxicity. J Neuroinflammation. 2004;1(1):8. doi:10.1186/1742-2094-1-8.
Article
PubMed
PubMed Central
Google Scholar
Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol. 1997;74(1–2):1–8.
Article
CAS
PubMed
Google Scholar
Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE. An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol. 1997;3(6):401–16.
Article
CAS
PubMed
Google Scholar
Ullrich CK, Groopman JE, Ganju RK. HIV-1 gp120- and gp160-induced apoptosis in cultured endothelial cells is mediated by caspases. Blood. 2000;96(4):1438–42.
CAS
PubMed
Google Scholar
Tran PB, Ren D, Miller RJ. The HIV-1 coat protein gp120 regulates cxcr4-mediated signaling in neural progenitor cells. J Neuroimmunol. 2005;160(1–2):68–76. doi:10.1016/j.jneuroim.2004.11.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan MZ, Shimizu S, Patel JP, Nelson A, Le M-T, Mullen-Przeworski A, et al. Regulation of neuronal P53 activity by CXCR4. Mol Cell Neurosci. 2005;30(1):58–66. doi:10.1016/j.mcn.2005.05.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garden GA, Guo W, Jayadev S, Tun C, Balcaitis S, Choi J, et al. HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J. 2004;18(10):1141–3. doi:10.1096/fj.04-1676fje.
CAS
PubMed
Google Scholar
Shin AH, Kim HJ, Thayer SA. Subtype selective NMDA receptor antagonists induce recovery of synapses lost following exposure to HIV-1 Tat. Br J Pharmacol. 2012;166(3):1002–17. doi:10.1111/j.1476-5381.2011.01805.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pingle SC, Jajoo S, Mukherjea D, Sniderhan LF, Jhaveri KA, Marcuzzi A, et al. Activation of the Adenosine A1 Receptor Inhibits HIV-1 Tat-Induced Apoptosis by Reducing Nuclear Factor-κB Activation and Inducible Nitric-Oxide Synthase. Mol Pharmacol. 2007;72(4):856–67. doi:10.1124/mol.106.031427.
Article
CAS
PubMed
Google Scholar
Zauli G, Secchiero P, Rodella L, Gibellini D, Mirandola P, Mazzoni M, et al. HIV-1 Tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells. J Biol Chem. 2000;275(6):4159–65.
Article
CAS
PubMed
Google Scholar
Zhu J, Mactutus CF, Wallace DR, Booze RM. HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther. 2009;329(3):1071–83. doi:10.1124/jpet.108.150144.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou BY, Liu Y, Kim B, Xiao Y, He JJ. Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci. 2004;27(3):296–305. doi:10.1016/j.mcn.2004.07.003.
Article
CAS
PubMed
Google Scholar
Bokhari SM, Yao H, Bethel-Brown C, Fuwang P, Williams R, Dhillon NK, et al. Morphine enhances Tat-induced activation in murine microglia. J Neurovirol. 2009;15(3):219–28. doi:10.1080/13550280902913628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price TO, Uras F, Banks WA, Ercal N. A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells. Exp Neurol. 2006;201(1):193–202. doi:10.1016/j.expneurol.2006.03.030.
Article
CAS
PubMed
Google Scholar
Mishra M, Taneja M, Malik S, Khalique H, Seth P. Human immunodeficiency virus type 1 Tat modulates proliferation and differentiation of human neural precursor cells: implication in NeuroAIDS. J Neurovirol. 2010;16(5):355–67. doi:10.3109/13550284.2010.513028.
Article
CAS
PubMed
Google Scholar
Guha D, Nagilla P, Redinger C, Srinivasan A, Schatten GP, Ayyavoo V. Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells. J Neuroinflammation. 2012;9:138. doi:10.1186/1742-2094-9-138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, et al. HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci. 2007;27(14):3703–11. doi:10.1523/JNEUROSCI.5522-06.2007.
Article
CAS
PubMed
Google Scholar
Borgne-Sanchez A, Dupont S, Langonne A, Baux L, Lecoeur H, Chauvier D, et al. Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of alphaVbeta3-expressing endothelial cells. Cell Death Differ. 2007;14(3):422–35. doi:10.1038/sj.cdd.4402018.
Article
CAS
PubMed
Google Scholar
Piller SC, Ewart GD, Jans DA, Gage PW, Cox GB. The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. J Virol. 1999;73(5):4230–8.
CAS
PubMed
PubMed Central
Google Scholar
Deshmane SL, Mukerjee R, Fan S, Del Valle L, Michiels C, Sweet T, et al. Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem. 2009;284(17):11364–73. doi:10.1074/jbc.M809266200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitayama H, Miura Y, Ando Y, Hoshino S, Ishizaka Y, Koyanagi Y. Human Immunodeficiency Virus Type 1 Vpr Inhibits Axonal Outgrowth through Induction of Mitochondrial Dysfunction. J Virol. 2008;82(5):2528–42. doi:10.1128/jvi.02094-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi B, De Girolami U, He J, Wang S, Lorenzo A, Busciglio J, et al. Apoptosis induced by HIV-1 infection of the central nervous system. J Clin Invest. 1996;98(9):1979–90. doi:10.1172/JCI119002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acheampong EA, Parveen Z, Muthoga LW, Kalayeh M, Mukhtar M, Pomerantz RJ. Human Immunodeficiency Virus Type 1 Nef Potently Induces Apoptosis in Primary Human Brain Microvascular Endothelial Cells via the Activation of Caspases. J Virol. 2005;79(7):4257–69. doi:10.1128/jvi.79.7.4257-4269.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kort JJ, Jalonen TO. The nef protein of the human immunodeficiency virus type 1 (HIV-1) inhibits a large-conductance potassium channel in human glial cells. Neurosci Lett. 1998;251(1):1–4.
Article
CAS
PubMed
Google Scholar
Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol. 2003;170(4):1716–27.
Article
CAS
PubMed
Google Scholar
Meggendorfer M, Rothenaigner I, Tigges B, Vincendeau M, Brack-Werner R. Neurotoxicity of HIV-1 proteins. The Neurology of AIDS. New York: Oxford University Press; 2011.
Google Scholar
Agudelo M, Figueroa G, Yndart A, Casteleiro G, Munoz K, Samikkannu T, et al. Alcohol and Cannabinoids Differentially Affect HIV Infection and Function of Human Monocyte-Derived Dendritic Cells (MDDC). Front Microbiol. 2015;6:1452. doi:10.3389/fmicb.2015.01452.
Article
PubMed
PubMed Central
Google Scholar
Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res. 2012;10(5):392–406. doi:10.2174/157016212802138832.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rippeth JD, Heaton RK, Carey CL, Marcotte TD, Moore DJ, Gonzalez R, et al. Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc. 2004;10(1):1–14. doi:10.1017/S1355617704101021.
Article
CAS
PubMed
Google Scholar
Samikkannu T, Rao KV, Salam AA, Atluri VS, Kaftanovskaya EM, Agudelo M, et al. HIV Subtypes B and C gp120 and Methamphetamine Interaction: Dopaminergic System Implicates Differential Neuronal Toxicity. Sci Rep. 2015;5:11130. doi:10.1038/srep11130.
Article
PubMed
PubMed Central
Google Scholar
Aksenov MY, Aksenova MV, Nath A, Ray PD, Mactutus CF, Booze RM. Cocaine-mediated enhancement of Tat toxicity in rat hippocampal cell cultures: the role of oxidative stress and D1 dopamine receptor. Neurotoxicology. 2006;27(2):217–28. doi:10.1016/j.neuro.2005.10.003.
Article
CAS
PubMed
Google Scholar
Hauser KF, El-Hage N, Buch S, Nath A, Tyor WR, Bruce-Keller AJ, et al. Impact of opiate-HIV-1 interactions on neurotoxic signaling. J Neuroimmune Pharmacol. 2006;1(1):98–105. doi:10.1007/s11481-005-9000-4.
Article
PubMed
Google Scholar
Nair MP, Chadha KC, Hewitt RG, Mahajan S, Sweet A, Schwartz SA. Cocaine differentially modulates chemokine production by mononuclear cells from normal donors and human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol. 2000;7(1):96–100.
CAS
PubMed
PubMed Central
Google Scholar
Bagetta G, Piccirilli S, Del Duca C, Morrone LA, Rombolà L, Nappi G, et al. Inducible nitric oxide synthase is involved in the mechanisms of cocaine enhanced neuronal apoptosis induced by HIV-1 gp120 in theneocortex of rat. Neurosci Lett. 2004;356(3):183–6. doi:10.1016/j.neulet.2003.11.065.
Article
CAS
PubMed
Google Scholar
Yao H, Allen JE, Zhu X, Callen S, Buch S. Cocaine and human immunodeficiency virus type 1 gp120 mediate neurotoxicity through overlapping signaling pathways. J Neurovirol. 2009;15(2):164–75. doi:10.1080/13550280902755375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buch S, Yao H, Roy S. HIV and cocaine. The Neurology of AIDS. New York: Oxford University Press; 2011.
Google Scholar
Riddle EL, Fleckenstein AE, Hanson GR. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 2006;8(2):E413–8.
Article
PubMed
PubMed Central
Google Scholar
Rogers TJ, Steele AD, Howard OM, Oppenheim JJ. Bidirectional heterologous desensitization of opioid and chemokine receptors. Ann N Y Acad Sci. 2000;917:19–28.
Article
CAS
PubMed
Google Scholar
El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF. Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia. 2005;50(2):91–106. doi:10.1002/glia.20148.
Article
PubMed
PubMed Central
Google Scholar
Reddy PV, Pilakka-Kanthikeel S, Saxena SK, Saiyed Z, Nair MP. Interactive Effects of Morphine on HIV Infection: Role in HIV-Associated Neurocognitive Disorder. AIDS Res Treat. 2012;2012:953678. doi:10.1155/2012/953678.
PubMed
PubMed Central
Google Scholar
Cabran GA, Raborn ES. HIV-1 and Cannabinoids. The Neurology of AIDS. New York: Oxford University Press; 2011.
Google Scholar
Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, et al. Rho-mediated regulation of tight junctions during monocyte migration across the blood–brain barrier in HIV-1 encephalitis (HIVE). Blood. 2006;107(12):4770–80. doi:10.1182/blood-2005-11-4721.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci. 2007;8(1):33–44. doi:10.1038/nrn2040.
Article
CAS
PubMed
Google Scholar
Iskander S, Walsh KA, Hammond RR. Human CNS cultures exposed to HIV-1 gp120 reproduce dendritic injuries of HIV-1-associated dementia. J Neuroinflammation. 2004;1(1):7. doi:10.1186/1742-2094-1-7.
Article
PubMed
PubMed Central
Google Scholar
Avdoshina V, Bachis A, Mocchetti I. Synaptic dysfunction in human immunodeficiency virus type-1-positive subjects: inflammation or impaired neuronal plasticity? J Intern Med. 2013;273(5):454–65. doi:10.1111/joim.12050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atluri VS, Kanthikeel SP, Reddy PV, Yndart A, Nair MP. Human synaptic plasticity gene expression profile and dendritic spine density changes in HIV-infected human CNS cells: role in HIV-associated neurocognitive disorders (HAND). PLoS One. 2013;8(4):e61399. doi:10.1371/journal.pone.0061399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samikkannu T, Atluri VSR, Arias AY, Rao KVK, Mulet CT, Jayant RD, et al. HIV-1 Subtypes B and C Tat Differentially Impact Synaptic Plasticity Expression and Implicates HIV-Associated Neurocognitive Disorders(). Curr HIV Res. 2014;12(6):397–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Napolitano M, Marfia GA, Vacca A, Centonze D, Bellavia D, Di Marcotullio L, et al. Modulation of gene expression following long-term synaptic depression in the striatum. Mol Brain Res. 1999;72(1):89–96. doi:10.1016/S0169-328X(99)00213-2.
Article
CAS
PubMed
Google Scholar
Atluri VS, Pilakka-Kanthikeel S, Samikkannu T, Sagar V, Kurapati KR, Saxena SK, et al. Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder. Mol Brain. 2014;7:37. doi:10.1186/1756-6606-7-37.
Article
PubMed
PubMed Central
Google Scholar
UNODC. World drug report 2014. Vienna: United Nations Office on Drugs and Crime; 2014. Available from: http://www.unodc.org/wdr2014/. Accessed on 5 May 2016.
Sagar V, Pilakka-Kanthikeel S, Atluri VSR, Ding H, Arias AY, Jayant RD, et al. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS. J Biomed Nanotechnol. 2015;11(10):1722–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atluri VS, Hernandez O, Hidalgo M, Kurapati KRV, Thangavel S, Kanthikeel SP, et al. Methamphetamine treatment and HIV-1 infection dysregulate Synaptic plasticity in SKNMC neuronal cells. J NeuroImmune Pharmacol. 2015;10(2):S59.
Google Scholar
Yndart A, Agudelo M, Raymond A, Atluri VSR, Munoz-Caamano K, Pilakka-Kanthikeel S, et al. Bath salts alter synaptic plasticity gene expression in neurons. J NeuroImmune Pharmacol. 2014;9(1):62.
Google Scholar
Ding H, Sagar V, Agudelo M, Pilakka-Kanthikeel S, Atluri VSR, Raymond A, et al. Enhanced blood–brain barrier transmigration using a novel Transferrin-embedded fluorescent magnetoliposome nanoformulation. Nanotechnology. 2014;25(5):055101. doi:10.1088/0957-4484/25/5/055101.
Article
PubMed
PubMed Central
Google Scholar
Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine. 2010;5:157–66.
CAS
PubMed
PubMed Central
Google Scholar
Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Escribano E, Fernandez-Pacheco R, Valdivia JG, Ibarra MR, Marquina C, Queralt J. Effect of magnet implant on iron biodistribution of Fe@C nanoparticles in the mouse. Arch Pharm Res. 2012;35(1):93–100. doi:10.1007/s12272-012-0109-8.
Article
CAS
PubMed
Google Scholar
Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun. 2013;4:1707.
Article
PubMed
Google Scholar
Jayant RD, Atluri VSR, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine. 2015;10:1077–93. doi:10.2147/ijn.s76517.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiandra L, Colombo M, Mazzucchelli S, Truffi M, Santini B, Allevi R, et al. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine. 2015;11(6):1387–97. doi:10.1016/j.nano.2015.03.009.
CAS
PubMed
Google Scholar
Wen X, Wang K, Zhao Z, Zhang Y, Sun T, Zhang F, et al. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS One. 2014;9(9):e106652. doi:10.1371/journal.pone.0106652.
Article
PubMed
PubMed Central
Google Scholar
Raymond AD, Diaz P, Chevelon S, Agudelo M, Yndart-Arias A, Ding H, et al. Microglia-derived HIV Nef + exosome impairment of the blood–brain barrier is treatable by nanomedicine-based delivery of Nef peptides. Journal of neurovirology. 2015:1–11. doi:10.1007/s13365-015-0397-0
Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Saxena SK, Nair M. Targeted Brain Derived Neurotropic Factors (BDNF) Delivery across the Blood–brain Barrier for Neuro-Protection Using Magnetic Nano Carriers: An In-Vitro Study. PLoS One. 2013;8(4):e62241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega-Gutiérrez S, Molina-Holgado E, Arévalo-Martín Á, Correa F, Viso A, López-Rodríguez ML, et al. Activation of the endocannabinoid system as therapeutic approach in a murine model of multiple sclerosis. FASEB J. 2005;19(10):1338–40. doi:10.1096/fj.04-2464fje.
PubMed
Google Scholar
Venkata A, Pilakka-Kanthikeel S, Kurapati KR, Sagar V, Thangavel S, Ding H, et al. Role of HDAC2 and miR-485 in regulation of synaptic plasticity genes in HIV infection: Implication in HAND. J Neuroimmune Pharmacol. 2014;9(1):6.
Google Scholar
Vigorito M, Connaghan KP, Chang SL. The HIV-1 transgenic rat model of neuroHIV. Brain Behav Immun. 2015;48:336–49. doi:10.1016/j.bbi.2015.02.020.
Article
CAS
PubMed
Google Scholar
Kong SD, Lee J, Ramachandran S, Eliceiri BP, Shubayev VI, Lal R, et al. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J Control Release. 2015;164(1):49–57. doi:10.1016/j.jconrel.2012.09.021.
Article
Google Scholar
Tombacz E, Majzik A, Horvat ZS, Illes E. Magnetite in aqueous medium: Coating its surface and surface coated with it. Rom Rep Phys. 2006;58(3):281–6.
CAS
Google Scholar
Ghose SK, Petitto SC, Tanwar KS, Lo CS, Eng PJ, Chaka AM et al. Chapter 1 Surface Structure and Reactivity of Iron Oxide-Water Interfaces. Developments in Earth and Environmental Sciences. Amsterdam, The Netherlands: Elsevier; 2007. p. 1–29.
Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release. 2002;82(1):17–27. doi:10.1016/S0168-3659(02)00088-3.
Article
CAS
PubMed
Google Scholar
Wiogo HTR, Lim M, Bulmus V, Gutierrez L, Woodward RC, Amal R. Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir. 2012;28(9):4346–56. doi:10.1021/la204740t.
Article
CAS
PubMed
Google Scholar
Sagar V, Pilakka-Kanthikeel S, Ding H, Atluri VSR, Jayant RD, Kaushik A, et al. Novel magneto-electric nanodelivery of “microRNA mimic” across blood–brain barrier: Implications to cocaine modulation on HIV-associated neurocognitive disorders. J NeuroImmune Pharmacol. 2014;9(1):49.
Google Scholar
Kaushik A, Jayant RD, Sagar V, Nair M. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin Drug Deliv. 2014;11(10):1635–46. doi:10.1517/17425247.2014.933803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sagar VHZ, Kaushik A, Roy U, Jayant RD, Atluri VSR, Pilakka-Kanthikeel S, El-Haage N, Nair M. Effect of Magneto-electric nanoparticle on deep brain motor coordination activity. J NeuroImmune Pharmacol. 2015;10(S2):S99–S100. doi:10.1007/s11481-015-9596-y.
Google Scholar
Fusco S, Sakar MS, Kennedy S, Peters C, Bottani R, Starsich F, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv Mater. 2013;26(6):952–7. doi:10.1002/adma.201304098.
Article
PubMed
Google Scholar