Klit HM, Finnerup NB, Jensen TS. Diagnosis, prevalence, characteristics, and treatment of central poststroke pain. Pain Clinical Update. 2015;23:1–7. http://www.iasp-pain.org/PublicationsNews/NewsletterIssue.aspx?ItemNumber=4439. Accessed 9 Dec 2015.
Google Scholar
National Institute of Neurological Disorders and Stroke. NINDS Central Pain Syndrome Information Page. http://www.ninds.nih.gov/disorders/central_pain/central_pain.htm
; access 16 Dec 2015.
Hains BC, Waxman SG. Sodium channel expression and the molecular pathophysiology of pain after SCI. Prog Brain Res. 2007;161:195–203.
Article
CAS
PubMed
Google Scholar
Bourinet E, Francois A, Laffray S. T-type calcium channels in neuropathic pain. Pain. 2016;157:S15–22.
Article
PubMed
Google Scholar
Tsantoulas C. Emerging potassium channel targets for the treatment of pain. Curr Opin Support Palliat Care. 2015;9:147–54.
Article
PubMed
Google Scholar
Li WG, Xu TL. Acid-sensing ion channels: a novel therapeutic target for pain and anxiety. Curr Pharm Des. 2015;21:885–94.
Article
CAS
PubMed
Google Scholar
Tsuda M, Tozaki-Saitoh H, Inoue K. Purinergic system, microglia and neuropathic pain. Curr Opin Pharmacol. 2012;12:74–9.
Article
CAS
PubMed
Google Scholar
Burnstock G, Campbell G, Satchell D, Smythe A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by nonadrenergic inhibitory nerves in the gut. Br J Pharmacol. 1970;40:668–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burnstock G, Dumsday B, Smythe A. Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol. 1972;44:451–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burnstock G. Historitical review: ATP as a neurotransmitter. Trends Pharmacol Sci. 2006;27:166–76.
Article
CAS
PubMed
Google Scholar
Kucher BM, Neary JT. Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem. 2005;92:525–35.
Article
CAS
PubMed
Google Scholar
Burnstock G. A basis for distinguishing two types of purinergic receptor. In: Bolis L, Straub RW, editors. Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. New York: Raven; 1978. p. 107–18.
Google Scholar
Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413–92.
CAS
PubMed
Google Scholar
Bleehen T, Hobbiger F, Keele CA. Identification of algogenic substances in human erythrocytes. J Physiol. 1976;262:131–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khakh BS, North RA. Neuromodulation by Extracellular ATP and P2X Receptors in the CNS. Neuron. 2012;76:51–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN. A P2X purinoceptor expressed by a subset of sensory neurons. Nature. 1995;377:428–30.
Article
CAS
PubMed
Google Scholar
Lewis C, Neldhart S, Holy C, North RA, Buell G, Surprenant A. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature. 1995;377:432–5.
Article
CAS
PubMed
Google Scholar
Guo A, Vulchanova L, Wang J, Li X, Elde R. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci. 1999;11:946–58.
Article
CAS
PubMed
Google Scholar
Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R. P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci. 1998;10:3470–8.
Article
CAS
PubMed
Google Scholar
Barclay J, Patel S, Dorn G, et al. Functional Downregulation of P2X(3) receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci. 2002;22:8139–47.
CAS
PubMed
Google Scholar
Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567:621–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jarvis MF. Contributions of P2X3 homomeric and heteromeric channels to acute and chronic pain. Expert Opin Ther Targets. 2003;7:513–22.
Article
CAS
PubMed
Google Scholar
Jarvis MF, Burgard EC, McGaraughty S, Onore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A. 2002;99:17179–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira MC, Pelegrini-da-Silva A, Tambeli CH, Parada CA. Peripheral mechanisms underlying the essential role of P2X3, 2/3 receptors in the development of inflammatory hyperalgesia. Pain. 2009;141:127–34.
Article
CAS
PubMed
Google Scholar
Ballini E, Virginio C, Medhurst SJ, Summerfield SG, Aldegheri L, Buson A, Carignani C, Chen YH, Giacometti A, Lago I, Powell AJ, Jarolimek W. Characterization of three diaminopyrimidines as potent and selective antagonists of P2X3 and P2X2/3 receptors with in vivo efficacy in a pain model. Br J Pharmacol. 2011;163:1315–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gum RJ, Wakefield B, Jarvis MF. P2X receptor antagonists for pain management: examination of binding and physicochemical properties. Purinergic Signal. 2012;8:41–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR, Jarvis MF. Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol. 2003;140:1381–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Li GW, Wang C, Gu Y, Huang LY. Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain. 2005;119:38–48.
Article
CAS
PubMed
Google Scholar
Trang T, Salter MW. P2X4 purinoceptor signaling in chronic pain. Purinergic Signal. 2012;8:621–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature. 2003;424:778–83.
Article
CAS
PubMed
Google Scholar
Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K. Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain. 2009;5:28.
Article
PubMed
PubMed Central
Google Scholar
Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci. 2008;28:11263–8.
Article
CAS
PubMed
Google Scholar
McGaraughty S, Chu KL, Namovic MT, et al. P2x(7)-related modulation of pathological nociception in rats. Neuroscience. 2007;146:1817–21.
Article
CAS
PubMed
Google Scholar
Fulgenzi A, Ticozzi P, Gabel CA, Dell’Antonio G, Quattrini A, Franzone JS, Ferrero ME. Periodate oxidized ATP (oATP) reduces hyperalgesia in mice: Involvement of P2X7 receptors and implications for therapy. Int J Immunopath Pharm. 2008;21:61–71.
CAS
Google Scholar
Jarvis MF. The neural-glial purinergic receptor ensemble in chronic pain states. Trends Neurosci. 2010;33:48–57.
Article
CAS
PubMed
Google Scholar
Solle M, Labasi J, Perregaux DG, et al. Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem. 2001;276:125–32.
Article
CAS
PubMed
Google Scholar
Nicke A, Kuan YH, Masin M, Rettinger J, Marquez-Klaka B, Bender O, Górecki DC Murrell-Lagnado RD, Soto F. A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. J Biol Chem. 2009;284:25813–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain. 2005;114:386–96.
Article
CAS
PubMed
Google Scholar
Honore P, Wade CL, Zhong C, Harris RR, Wu C, Ghayur T, Iwakura Y, Decker MW, Faltynek C, Sullivan J, Jarvis MF. Interleukin-1alphabeta gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain. Behav Brain Res. 2006;167:355–64.
Article
CAS
PubMed
Google Scholar
Kobayashi K, Takahashi E, Miyagawa Y, Yamanaka H, Noguchi K. Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model. Neurosci Lett. 2011;504:57–61.
Article
CAS
PubMed
Google Scholar
He WJ, Cui J, Du L, Zhao YD, Burnstock G, Zhou HD, Ruan HZ. Spinal P2X7 receptor mediates microglia activation-induced neuropathic pain in the sciatic nerve injury rat model. Behav Brain Res. 2012;226:163–70.
Article
CAS
PubMed
Google Scholar
Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF. A-740003 [N-(1-{[(cyanoimino)(5- quinolinylamino)methyl]amino}-2,2-dimethylpropyl)-2-(3,4- dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther. 2006;319:1376–85.
Article
CAS
PubMed
Google Scholar
Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB, Malcangio M. P2X7-dependent release of interleukin-1β and nociception in the spinal cord following lipopolysaccharide. J Neurosci. 2010;30:573–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holton P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959;145:494–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang RX, Li A, Liu B, Wang L, Ren K, Zhang H, Berman BM, Lao L. IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats. Pain. 2008;135:232–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenner GJ, Ji RR, Shaffer S, Woolf CJ. Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependent site, serine-896, in spinal cord dorsal horn neurons. Eur J Neurosci. 2004;20:375–84.
Article
PubMed
Google Scholar
Adriouch S, Dox C, Welge V, Seman M, Koch-Nolte F, Haag F. Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J Immunol. 2002;169:4108–12.
Article
CAS
PubMed
Google Scholar
Young MT, Pelegrin P, Surprenant A. Identification of Thr283 as a key determinant of P2X7 receptor function. Br J Pharmacol. 2006;149:261–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S, Ritchie J, Austin JS, Zaykin DV, Vander Meulen H, Costigan M, Herbert TA, Yarkoni-Abitbul M, Tichauer D, Livneh J, Gershon E, Zheng M, Tan K, John SL, Slade GD, Jordan J, Woolf CJ, Peltz G, Maixner W, Diatchenko L, Seltzer Z, Salter MW, Mogil JS. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat Med. 2012;18:595–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burnstock G, Wood JN. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol. 1996;6:526–32.
Article
CAS
PubMed
Google Scholar
Fields RD, Burnstock G. Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci. 2006;7:423–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahr CE, Jessell TM. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983;304:730–3.
Article
CAS
PubMed
Google Scholar
Werry EL, Liu GJ, Bennett MR. Glutamate-stimulated ATP release from spinal cord astrocytes is potentiated by substance P. J Neurochem. 2006;99(3):924–36.
Article
CAS
PubMed
Google Scholar
Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci. 2004;20:467–73.
Article
PubMed
Google Scholar
Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, Tracey K, Martin D, Maier SF, Watkins LR. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci. 2003;23:1026–40.
CAS
PubMed
Google Scholar
Wang XH, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med. 2004;10:821–7.
Article
CAS
PubMed
Google Scholar
Novakovic SD, Kassotakis LC, Oglesby IB, Smith JAM, Eglen RM, Ford APDW, Hunter JC. Immunocytochemical localization of P-2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain. 1999;80:273–82.
Article
CAS
PubMed
Google Scholar
Herrity AN, Petruska JC, Stirling DP, Rau KK, Hubscher CH. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons. Am J Physiol-Reg. 2015;308:R1021–33.
CAS
Google Scholar
Munoz A, Somogyi GT, Boone TB, Ford AP, Smith CP. Modulation of bladder afferent signals in normal and spinal cord-injured rats by purinergic P2X3 and P2X2/3 receptors. BJU Int. 2012;110:E409–414.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, De Koninck Y, Keane RW, Lacroix S. P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci. 2012;32:3058–66.
Article
PubMed
Google Scholar
Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M. Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A. 2009;106:12489–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kattan M, Moulin DE. Central post-stroke pain. In: Toth C, Moulin DE, editors. Neuropathic Pain: Causes, Management, and Understanding. Cambridge: Cambridge University Press; 2013. p. 170–6.
Chapter
Google Scholar
Inoue K, Tsuda M. P2X4 Receptors of Microglia in Neuropathic Pain. Cns Neurol Disord-Dr. 2012;11:699–704.
Article
CAS
Google Scholar
Inoue K, Tsuda M. Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol. 2012;234:293–301.
Article
CAS
PubMed
Google Scholar
Trang T, Beggs S, Salter MW. ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol. 2012;234:354–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaccari J, Bastien PD, Yurcisin G, Pineau I, Dietrich WD, De Koninck Y, Keane RW, Lacroix S. P2X(4) Receptors Influence Inflammasome Activation after Spinal Cord Injury. J Neurosci. 2012;32:3058–66.
Article
CAS
Google Scholar
Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K. P2X4 receptors and neuropathic pain. Front Cell Neurosci. 2013;7:191.
Article
PubMed
PubMed Central
Google Scholar
Zhou TT, Wu JR, Chen ZY, Liu ZX, Miao B. Effects of dexmedetomidine on P2X4Rs, p38-MAPK and BDNF in spinal microglia in rats with spared nerve injury. Brain Res. 2014;1568:21–30.
Article
CAS
PubMed
Google Scholar
Skaper SD, Debetto P, Giusti P. The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J. 2010;24:337–45.
Article
CAS
PubMed
Google Scholar
Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999;96:15222–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shyu BC, Vogt BA. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway. Mol Pain. 2009;5:51.
Article
PubMed
PubMed Central
Google Scholar
Walton KD, Llinas RR. Central pain as a thalamocortical dysrhythmia: a thalamic efference disconnection? In: Kruger L, Light AR, Walton K, editors. Translational Pain Research. Boca Raton: CRC Press; 2010. Chapter 13:301–314.
Google Scholar
Kuan YH, Shih HC, Tang SC, Jeng JS, Shyu BC. Targeting P2X7 receptor for the treatment of central post-stroke pain in a rodent model. Neurobiol Dis. 2015;78:134–45.
Article
CAS
PubMed
Google Scholar
Andó RD, Sperlágh B. The role of glutamate release mediated by extrasynaptic P2X7 receptors in animal models of neuropathic pain. Brain Res Bull. 2013;93:80–5.
Article
PubMed
Google Scholar
Cervetto C, Alloisio S, Frattaroli D, Mazzotta MC, Milanese M, Gavazzo P, Passalacqua M, Nobile M, Maura G, Marcoli M. The P2X7 receptor as a route for non-exocytotic glutamate release: dependence on the carboxyl tail. J Neurochem. 2013;124:821–31.
Article
CAS
PubMed
Google Scholar
Hughes JP, Hatcher JP, Chessell IP. The role of P2X7 in pain and inflammation. Purinergic Signal. 2007;3:163–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H, Fresegna D, Bullitta S, De Vito F, Musumeci G, Di Sanza C, Strata P, Centonze D. Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci. 2013;33:12105–21.
Article
CAS
PubMed
Google Scholar
Francesco F, Yves De K. Microglia Control Neuronal Network Excitability via BDNF Signalling. Neural Plast. 2013;2013:Article ID 429815, 11.
Google Scholar
Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G. Tissue distribution of the P2X7 receptor. Neuropharmacology. 1997;36:1277–83.
Article
CAS
PubMed
Google Scholar
Bradbury EJ, Burnstock G, McMahon SB. The expression of P2X(3) purinoreceptors in sensory neurons: Effects of axotomy and glial-derived neurotrophic factor. Mol Cell Neurosci. 1998;12:256–68.
Article
CAS
PubMed
Google Scholar
Rubio ME, Soto F. Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci. 2001;21:641–53.
CAS
PubMed
Google Scholar
Bele T, Fabbretti E. P2X receptors, sensory neurons and pain. Curr Med Chem. 2015;22:845–50.
Article
CAS
PubMed
Google Scholar
Jacobson KA, Costanzi S, Joshi BV, Besada P, Shin DH, Ko H, Ivanov AA, Mamedova L. Agonists and antagonists for P2 receptors. Novartis Found Symp. 2006;276:58–68. discussion 68–72, 107–12, 275–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waszkielewicz AM, Gunia A, Szkaradek N, Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem. 2013;20:1241–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16:1258–66.
Article
CAS
PubMed
Google Scholar