Boulanger LM. Immune proteins in brain development and synaptic plasticity. Neuron. 2009;64(1):93–109.
Article
CAS
PubMed
Google Scholar
Marin I, Kipnis J. Learning and memory ... and the immune system. Learn Mem. 2013;20(10):601–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collingridge GL, et al. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11(7):459–73.
Article
CAS
PubMed
Google Scholar
Nicoll RA, Roche KW. Long-term potentiation: peeling the onion. Neuropharmacology. 2013;74:18–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feldman DE. The spike-timing dependence of plasticity. Neuron. 2012;75(4):556–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borbely E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides. 2013;47(6):439–50.
Article
CAS
PubMed
Google Scholar
van den Pol AN. Neuropeptide transmission in brain circuits. Neuron. 2012;76(1):98–115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Casillas-Espinosa PM, Powell KL, O'Brien TJ. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia. 2012;53(Suppl 9):41–58.
Article
CAS
PubMed
Google Scholar
Baudry M, et al. Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Res. 2015;1621:73–81.
Article
CAS
PubMed
Google Scholar
Sacktor TC. How does PKMzeta maintain long-term memory? Nat Rev Neurosci. 2011;12(1):9–15.
Article
CAS
PubMed
Google Scholar
Bliim N, et al. Transcriptional regulation of long-term potentiation. Neurogenetics. 2016;17(4):201–10.
Article
CAS
PubMed
Google Scholar
Nicolas CS, et al. The Jak/STAT pathway is involved in synaptic plasticity. Neuron. 2012;73(2):374–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kigerl KA, et al. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol. 2010;160(8):1872–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28(4):477–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delgoffe GM, Murray PJ, Vignali DA. Interpreting mixed signals: the cell's cytokine conundrum. Curr Opin Immunol. 2011;23(5):632–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bezbradica JS, Medzhitov R. Integration of cytokine and heterologous receptor signaling pathways. Nat Immunol. 2009;10(4):333–9.
Article
CAS
PubMed
Google Scholar
Shirai Y. On the transplantation of the rat sarcoma in adult heterogenous animals. Jap Med World. 1921;1:14–5.
Google Scholar
Murphy JB, Sturm E. Conditions determining the transplantability of tissues in the brain. J of Exp Medicine. 1923;38(2):183–97.
Article
CAS
Google Scholar
Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol. 2007;28(1):12–8.
Article
CAS
PubMed
Google Scholar
Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol. 2017;18(2):123–31.
Article
CAS
PubMed
Google Scholar
Ginhoux F, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davalos D, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.
Article
CAS
PubMed
Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–8.
Article
CAS
PubMed
Google Scholar
Wake H, et al. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29(13):3974–80.
Article
CAS
PubMed
Google Scholar
Tremblay ME, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010;8(11):e1000527.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suzumura A. Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci. 2013;14(1):16–20.
Article
CAS
PubMed
Google Scholar
Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci. 2011;33(3–4):199–209.
Article
CAS
PubMed
Google Scholar
Tremblay ME, et al. The role of microglia in the healthy brain. J Neurosci. 2011;31(45):16064–9.
Article
CAS
PubMed
Google Scholar
Li C, et al. Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer's disease. Curr Alzheimer Res. 2011;8(1):67–80.
Article
PubMed
Google Scholar
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94(4):1077–98.
Article
PubMed
Google Scholar
Kaindl AM, et al. Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol. 2012;72(4):536–49.
Article
CAS
PubMed
Google Scholar
Wraith DC, Nicholson LB. The adaptive immune system in diseases of the central nervous system. J Clin Invest. 2012;122(4):1172–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedemonte E, et al. Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. Pharmacol Ther. 2006;111(3):555–66.
Article
CAS
PubMed
Google Scholar
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.
Article
CAS
PubMed
Google Scholar
London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louveau A, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol. 2015;36(10):569–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014;14(7):463–77.
Article
CAS
PubMed
Google Scholar
Riazi K, et al. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci. 2015;35(12):4942–52.
Article
CAS
PubMed
Google Scholar
Lynch MA. Neuroinflammatory changes negatively impact on LTP: A focus on IL-1beta. Brain Res. 2015;1621:197–204.
Article
CAS
PubMed
Google Scholar
Patterson SL. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1beta, BDNF and synaptic plasticity. Neuropharmacology. 2015;96(Pt A):11–8.
Article
CAS
PubMed
Google Scholar
Nisticò R, et al. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS One. 2013;8(1):e54666.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jankowsky JL, Derrick BE, Patterson PH. Cytokine responses to LTP induction in the rat hippocampus: a comparison of in vitro and in vivo techniques. Learn Mem. 2000;7(6):400–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balschun D, et al. Interleukin-6: a cytokine to forget. FASEB J. 2004;18(14):1788–90.
CAS
PubMed
Google Scholar
Gardoni F, et al. Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-1beta and NMDA stimulation. J Neuroinflammation. 2011;8(1):14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai AY, et al. Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal neurons. J Neuroimmunol. 2006;175(1–2):97–106.
Article
CAS
PubMed
Google Scholar
Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96(Pt A):70–82.
Article
CAS
PubMed
Google Scholar
Clark AK, et al. Selective activation of microglia facilitates synaptic strength. J Neurosci. 2015;35(11):4552–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, et al. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron. 2014;82(1):195–207.
Article
CAS
PubMed
Google Scholar
Hewitt EW. The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology. 2003;110(2):163–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corriveau RA, Huh GS, Shatz CJ. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron. 1998;21(3):505–20.
Article
CAS
PubMed
Google Scholar
Lidman O, Olsson T, Piehl F. Expression of nonclassical MHC class I (RT1-U) in certain neuronal populations of the central nervous system. Eur J Neurosci. 1999;11(12):4468–72.
Article
CAS
PubMed
Google Scholar
Huh GS, et al. Functional requirement for class I MHC in CNS development and plasticity. Science. 2000;290(5499):2155–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goddard CA, Butts DA, Shatz CJ. Regulation of CNS synapses by neuronal MHC class I. Proc Natl Acad Sci. 2007;104(16):6828–33.
Article
PubMed
PubMed Central
Google Scholar
Needleman LA, et al. MHC class I molecules are present both pre-and postsynaptically in the visual cortex during postnatal development and in adulthood. Proc Natl Acad Sci. 2010;107(39):16999–7004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature. 2014;509(7499):195–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson PA, et al. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn Mem. 2013;20(9):505–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glynn MW, et al. MHCI negatively regulates synapse density during the establishment of cortical connections. Nat Neurosci. 2011;14(4):442–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon-Salazar TJ, et al. MHC class I limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling. J Neurosci. 2014;34(35):11844–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez-Alcazar M, et al. Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp Neurol. 2014;253:154–64.
Article
PubMed
Google Scholar
Vasek MJ, et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534(7608):538–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron. 2013;77(1):10–8.
Article
CAS
PubMed
Google Scholar
Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat Neurosci. 2004;7(4):327–32.
Article
CAS
PubMed
Google Scholar
Hooks BM, Chen C. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse. Neuron. 2006;52(2):281–91.
Article
CAS
PubMed
Google Scholar
Wiesel TN. The postnatal development of the visual cortex and the influence of environment. Biosci Rep. 1982;2(6):351–77.
Article
CAS
PubMed
Google Scholar
Stevens B, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78.
Article
CAS
PubMed
Google Scholar
Schafer DP, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sipe GO, et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun. 2016;7:2–15.
Article
CAS
Google Scholar
Paolicelli RC, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.
Article
CAS
PubMed
Google Scholar
Zhan Y, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17(3):400–6.
Article
CAS
PubMed
Google Scholar
Rogers JT, et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31(45):16241–50.
Article
CAS
PubMed
Google Scholar
Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89.
Article
CAS
PubMed
Google Scholar
Nagerl UV, et al. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron. 2004;44(5):759–67.
Article
PubMed
Google Scholar
Shinoda Y, et al. Repetition of mGluR-dependent LTD causes slowly developing persistent reduction in synaptic strength accompanied by synapse elimination. Brain Res. 2005;1042(1):99–107.
Article
CAS
PubMed
Google Scholar
Kamikubo Y, et al. Long-lasting synaptic loss after repeated induction of LTD: independence to the means of LTD induction. Eur J Neurosci. 2006;24(6):1606–16.
Article
PubMed
Google Scholar
Ramiro-Cortés Y, Israely I. Long lasting protein synthesis-and activity-dependent spine shrinkage and elimination after synaptic depression. PLoS One. 2013;8(8):e71155.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wiegert JS, Oertner TG. Long-term depression triggers the selective elimination of weakly integrated synapses. Proc Natl Acad Sci U S A. 2013;110(47):E4510–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hasegawa S, et al. Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD. Sci Rep. 2015;5(7707):1–6.
Google Scholar
Chen Z, et al. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat Commun. 2014;5:4486.
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Trapp BD. Microglia and neuroprotection. J Neurochem. 2016;136(Suppl 1):10–7.
Article
CAS
PubMed
Google Scholar
Trapp BD, et al. Evidence for synaptic stripping by cortical microglia. Glia. 2007;55(4):360–8.
Article
PubMed
Google Scholar
Perry VH, O'Connor V. The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro. 2010;2(5):e00047.
Article
PubMed
Google Scholar
Delpech JC, et al. Microglia in neuronal plasticity: Influence of stress. Neuropharmacology. 2015;96(Pt A):19–28.
Article
CAS
PubMed
Google Scholar
Tyzack GE, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun. 2014;5:4294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parkhurst CN, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155(7):1596–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyamoto A, et al. Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun. 2016;7:12540.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turrigiano GG, et al. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391(6670):892–6.
Article
CAS
PubMed
Google Scholar
Turrigiano GG. The dialectic of Hebb and homeostasis. Phil Trans R Soc B. 2017;372(1715):20160258.
Article
PubMed
Google Scholar
Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-α. Nature. 2006;40(7087):1054–9.
Article
CAS
Google Scholar
Cingolani LA, et al. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by β3 integrins. Neuron. 2008;58(5):749–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aizenman CD, Pratt KG. There's more than one way to scale a synapse. Neuron. 2008;58(5):651–3.
Article
CAS
PubMed
Google Scholar
Kaneko M, et al. Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron. 2008;58(5):673–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonneville R, et al. Understanding brain dysfunction in sepsis. Ann Intensive Care. 2013;3(1):15.
Article
PubMed
PubMed Central
Google Scholar
Wang GF, Li W, Li K. Acute encephalopathy and encephalitis caused by influenza virus infection. Curr Opin Neurol. 2010;23(3):305–11.
Article
PubMed
Google Scholar
De Chiara G, et al. Infectious agents and neurodegeneration. Mol Neurobiol. 2012;46(3):614–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jurgens HA, Amancherla K, Johnson RW. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J Neurosci. 2012;32(12):3958–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brask J, et al. Changes in calcium currents and GABAergic spontaneous activity in cultured rat hippocampal neurons after a neurotropic influenza A virus infection. Brain Res Bull. 2001;55(3):421–9.
Article
CAS
PubMed
Google Scholar
Brask J, et al. Effects on synaptic activity in cultured hippocampal neurons by influenza A viral proteins. J Neuro-Oncol. 2005;11(4):395–402.
CAS
Google Scholar
Piacentini R, et al. HSV-1 promotes Ca2+ −mediated APP phosphorylation and Abeta accumulation in rat cortical neurons. Neurobiol Aging. 2011;32(12):2323 e13–26.
Article
CAS
Google Scholar
Liou AK, et al. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol. 2003;69(2):103–42.
Article
CAS
PubMed
Google Scholar
Angeloni C, et al. Traumatic brain injury and NADPH oxidase: a deep relationship. Oxidative Med Cell Longev. 2015;2015:370312.
Google Scholar
Aertker BM, Bedi S, Cox CS Jr. Strategies for CNS repair following TBI. Exp Neurol. 2016;275(Pt 3):411–26.
Article
PubMed
Google Scholar
Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015;72(3):355–62.
Article
PubMed
PubMed Central
Google Scholar
Hemphill MA, et al. Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron. 2015;85(6):1177–92.
Article
CAS
PubMed
Google Scholar
Vezzani A, et al. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.
Article
CAS
PubMed
Google Scholar
Vezzani A, et al. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31–40.
Article
CAS
PubMed
Google Scholar
Savin C, Triesch J, Meyer-Hermann M. Epileptogenesis due to glia-mediated synaptic scaling. J R Soc Interface. 2009;6(37):655–68.
Article
CAS
PubMed
Google Scholar
Wall AM, et al. Tumor necrosis factor-alpha potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia. J Neurosci Res. 2015;93(5):815–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petit G, et al. Binge drinking in adolescents: a review of neurophysiological and neuroimaging research. Alcohol Alcohol. 2014;49(2):198–206.
Article
PubMed
Google Scholar
Riedel G, Platt B, Micheau J. Glutamate receptor function in learning and memory. Behav Brain Res. 2003;140(1–2):1–47.
Article
CAS
PubMed
Google Scholar
Ward RJ, Lallemand F, de Witte P. Biochemical and neurotransmitter changes implicated in alcohol-induced brain damage in chronic or 'binge drinking' alcohol abuse. Alcohol Alcohol. 2009;44(2):128–35.
Article
CAS
PubMed
Google Scholar
Guerri C, Pascual M. Mechanisms involved in the neurotoxic, cognitive, and neurobehavioral effects of alcohol consumption during adolescence. Alcohol. 2010;44(1):15–26.
Article
CAS
PubMed
Google Scholar
Vetreno RP, Qin L, Crews FT. Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis. 2013;59:52–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Philpot R, Kirstein C. Developmental differences in the accumbal dopaminergic response to repeated ethanol exposure. Ann N Y Acad Sci. 2004;1021:422–6.
Article
CAS
PubMed
Google Scholar
LeMarquand D, Pihl RO, Benkelfat C. Serotonin and alcohol intake, abuse, and dependence: findings of animal studies. Biol Psychiatry. 1994;36(6):395–421.
Article
CAS
PubMed
Google Scholar
Edenberg HJ, et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet. 2004;74(4):705–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kervern M, et al. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus. Hippocampus. 2015;25(8):912–23.
Article
CAS
PubMed
Google Scholar
Jacobus J, Tapert SF. Neurotoxic effects of alcohol in adolescence. Annu Rev Clin Psychol. 2013;9:703–21.
Article
PubMed
Google Scholar
Bava S, et al. Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res. 2013;37(Suppl 1):E181–9.
Article
PubMed
Google Scholar
Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci. 2004;1021:77–85.
Article
PubMed
Google Scholar
Giedd JN. The teen brain: insights from neuroimaging. J Adolesc Health. 2008;42(4):335–43.
Article
PubMed
Google Scholar
Guerri C, Bazinet A, Riley EP. Foetal Alcohol Spectrum Disorders and alterations in brain and behaviour. Alcohol Alcohol. 2009;44(2):108–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alfonso-Loeches S, Pascual M, Guerri C. Gender differences in alcohol-induced neurotoxicity and brain damage. Toxicology. 2013;311(1–2):27–34.
Article
CAS
PubMed
Google Scholar
Centonze D, et al. The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ. 2010;17(7):1083–91.
Article
CAS
PubMed
Google Scholar
Amor S, et al. Inflammation in neurodegenerative diseases--an update. Immunology. 2014;142(2):151–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nisticò R, et al. Targeting synaptic dysfunction in Alzheimer's disease therapy. Mol Neurobiol. 2012;46(3):572–87.
Article
PubMed
CAS
Google Scholar
Pignatelli M, et al. Synaptic plasticity as a therapeutic target in the treatment of autism-related single-gene disorders. Curr Pharm Des. 2013;19(36):6480–90.
Article
CAS
PubMed
Google Scholar
Nisticò R, et al. Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philos Trans R Soc Lond Ser B Biol Sci. 2013;369(1633):20130162.
Article
CAS
Google Scholar
McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8(9):913–9.
Article
CAS
PubMed
Google Scholar
Mori F, et al. Interleukin-1beta Promotes Long-Term Potentiation in Patients with Multiple Sclerosis. NeuroMolecular Med. 2014;16(1):38–51.
Article
CAS
PubMed
Google Scholar
Kim Do Y, et al. Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS ONE. 2012;7(5):–e35476.
Sasaki A, et al. Microglial activation in early stages of amyloid beta protein deposition. Acta Neuropathol. 1997;94(4):316–22.
Article
CAS
PubMed
Google Scholar
Tan ZS, et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology. 2007;68(22):1902–8.
Article
CAS
PubMed
Google Scholar
Wang Q, et al. beta-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur J Neurosci. 2005;22(11):2827–32.
Article
PubMed
Google Scholar
Schmid AW, Lynch MA, Herron CE. The effects of IL-1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus. 2009;19(7):670–6.
Article
CAS
PubMed
Google Scholar
Kotilinek LA, et al. Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain. 2008;131(Pt 3):651–64.
Article
PubMed
PubMed Central
Google Scholar
Jones RS, Lynch MA. How dependent is synaptic plasticity on microglial phenotype? Neuropharmacology. 2015;96(Pt A):3–10.
Article
CAS
PubMed
Google Scholar
Hong S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diogenes MJ, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32(34):11750–62.
Article
CAS
PubMed
Google Scholar
Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.
Article
CAS
PubMed
Google Scholar
Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson's disease. Ann Neurol. 2003;53 Suppl 3:S49–58. discussion S58–60
Article
PubMed
CAS
Google Scholar
Xue X, et al. Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson's disease. Brain Res Bull. 2014;103:54–9.
Article
CAS
PubMed
Google Scholar
Di Filippo M, et al. Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci. 2008;29(8):402–12.
Article
PubMed
CAS
Google Scholar