Moffat SD. Aging and spatial navigation: what do we know and where do we go? Neuropsychol Rev. 2009;19(4):478–89.
Article
PubMed
Google Scholar
Zhu H, Yan H, Tang N, Li X, Pang P, Li H, et al. Impairments of spatial memory in an Alzheimer’s disease model via degeneration of hippocampal cholinergic synapses. Nat Commun. 2017;8(1):1676.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, et al. Performance on a virtual reality spatial memory navigation task in depressed patients. Am J Psychiatry. 2007;164(3):516–9.
Article
PubMed
Google Scholar
Baierle M, Nascimento SN, Moro AM, Brucker N, Freitas F, Gauer B, et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev. 2015;2015:804198.
Article
PubMed
PubMed Central
Google Scholar
Kamsler A, Segal M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci. 2003;23(1):269–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis SM, Pennypacker KR. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int. 2017;107:23–32.
Article
CAS
PubMed
Google Scholar
Lee KH, Cha M, Lee BH. Neuroprotective effect of antioxidants in the brain. Int J Mol Sci. 2020;21(19):7152.
Article
CAS
PubMed Central
Google Scholar
Fisher AB. Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. Antioxid Redox Signal. 2011;15(3):831–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tulsawani R, Kelly LS, Fatma N, Chhunchha B, Kubo E, Kumar A, Singh DP. Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage. BMC Neurosci. 2010;11:125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeo IJ, Park MH, Son DJ, Kim JY, Nam KT, Hyun BK, et al. PRDX6 inhibits neurogenesis through downregulation of WDFY1-mediated TLR4 signal. Mol Neurobiol. 2019;56(5):3132–44.
Article
CAS
PubMed
Google Scholar
Manevich Y, Fisher AB. Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med. 2005;38(11):1422–32.
Article
CAS
PubMed
Google Scholar
Li H, Benipal B, Zhou S, Dodia C, Chatterjee S, Tao JQ, et al. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free Radic Biol Med. 2015;87:356–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fatma N, Kubo E, Takamura Y, Ishihara K, Garcia C, Beebe DC, et al. Loss of NF-kappaB control and repression of Prdx6 gene transcription by reactive oxygen species-driven SMAD3-mediated transforming growth factor beta signaling. J Biol Chem. 2009;284(34):22758–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun HM, Jin P, Han JY, Lee MS, Han SB, Oh KW, et al. Acceleration of the development of Alzheimer’s disease in amyloid beta-infused peroxiredoxin 6 overexpression transgenic mice. Mol Neurobiol. 2013;48(3):941–51.
Article
CAS
PubMed
Google Scholar
Yun HM, Choi DY, Oh KW, Hong JT. PRDX6 exacerbates dopaminergic neurodegeneration in a MPTP mouse model of Parkinson’s disease. Mol Neurobiol. 2015;52(1):422–31.
Article
CAS
PubMed
Google Scholar
Sundar IK, Chung S, Hwang JW, Arunachalam G, Cook S, Yao H, et al. Peroxiredoxin 6 differentially regulates acute and chronic cigarette smoke mediated lung inflammatory response and injury. Exp Lung Res. 2010;36(8):451–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lubec J, Smidak R, Malikovic J, Feyissa DD, Korz V, Hoger H, et al. Dentate gyrus peroxiredoxin 6 levels discriminate aged unimpaired from impaired rats in a spatial memory task. Front Aging Neurosci. 2019;11:198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu Q, Xiong Y, Fan L, Qiao B, Xia Z, Hu L, et al. Peroxiredoxin 6 attenuates ischemia and hypoxiainduced liver damage of braindead donors. Mol Med Rep. 2016;13(1):753–61.
Article
CAS
PubMed
Google Scholar
Jia G, Tan B, Ma J, Zhang L, Jin X, Li C. Prdx6 upregulation by curcumin attenuates ischemic oxidative damage via SP1 in rats after stroke. Biomed Res Int. 2017;2017:6597401.
Article
PubMed
PubMed Central
Google Scholar
Vazquez-Medina JP, Tao JQ, Patel P, Bannitz-Fernandes R, Dodia C, Sorokina EM, et al. Genetic inactivation of the phospholipase A2 activity of peroxiredoxin 6 in mice protects against LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2019;316(4):L656–68.
Article
PubMed
PubMed Central
Google Scholar
Buonora JE, Mousseau M, Jacobowitz DM, Lazarus RC, Yarnell AM, Olsen CH, et al. Autoimmune profiling reveals peroxiredoxin 6 as a candidate traumatic brain injury biomarker. J Neurotrauma. 2015;32(22):1805–14.
Article
PubMed
PubMed Central
Google Scholar
Yun HM, Park KR, Kim EC, Hong JT. PRDX6 controls multiple sclerosis by suppressing inflammation and blood brain barrier disruption. Oncotarget. 2015;6(25):20875.
Article
PubMed
PubMed Central
Google Scholar
Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS ONE. 2014;9(4):e92325.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN. Interleukin-6 (IL-6) Production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci. 1999;19(13):5236–44.
Article
PubMed
PubMed Central
Google Scholar
Ota Y, Zanetti AT, Hallock RM. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast. 2013;2013:185463.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J. Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal. 2020;18(1):62.
Article
PubMed
PubMed Central
Google Scholar
Yun HM, Park KR, Lee HP, Lee DH, Jo M, Shin DH, et al. PRDX6 promotes lung tumor progression via its GPx and iPLA2 activities. Free Radic Biol Med. 2014;69:367–76.
Article
CAS
PubMed
Google Scholar
Pacifici F, Arriga R, Sorice GP, Capuani B, Scioli MG, Pastore D, et al. Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes. 2014;63(10):3210–20.
Article
CAS
PubMed
Google Scholar
Melhem H, Spalinger MR, Cosin-Roger J, Atrott K, Lang S, Wojtal KA, et al. Prdx6 deficiency ameliorates DSS colitis: relevance of compensatory antioxidant mechanisms. J Crohns Colitis. 2017;11(7):871–84.
Article
PubMed
Google Scholar
Kim SY, Chun E, Lee KY. Phospholipase A(2) of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis. Cell Death Differ. 2011;18(10):1573–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Phelan SA, Forsman-Semb K, Taylor EF, Petros C, Brown A, et al. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J Biol Chem. 2003;278(27):25179–90.
Article
CAS
PubMed
Google Scholar
Zhang W, Liu X, Xu W, Wei X, Zhang J, Wang B. Effects of BDNF-ERK-CREB signaling pathways on cognitive function and neural plasticity in a rat model of depression. Int J Clin Exp Med. 2019;12(6):6684–94.
CAS
Google Scholar
Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–58.
Article
PubMed
PubMed Central
Google Scholar
Huang IY, Hsu YL, Chen CC, Chen MF, Wen ZH, Huang HT, et al. Excavatolide-B enhances contextual memory retrieval via repressing the delayed rectifier potassium current in the hippocampus. Mar Drugs. 2018;16(11):405.
Article
CAS
PubMed Central
Google Scholar
Higaki A, Mogi M, Iwanami J, Min LJ, Bai HY, Shan BS, et al. Recognition of early stage thigmotaxis in Morris water maze test with convolutional neural network. PLoS ONE. 2018;13(5):e0197003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: therapeutic implications for Alzheimer’s dementia. Ageing Res Rev. 2018;48:109–21.
Article
CAS
PubMed
Google Scholar
Pritchett D, Taylor AM, Barkus C, Engle SJ, Brandon NJ, Sharp T, et al. Searching for cognitive enhancement in the Morris water maze: better and worse performance in D-amino acid oxidase knockout (Dao(-/-)) mice. Eur J Neurosci. 2016;43(7):979–89.
Article
PubMed
PubMed Central
Google Scholar
Phasuk S, Pairojana T, Suresh P, Yang CH, Roytrakul S, Huang SP, et al. Enhanced contextual fear memory in peroxiredoxin 6 knockout mice is associated with hyperactivation of MAPK signaling pathway. Mol Brain. 2021;14(1):42.
Article
PubMed
PubMed Central
Google Scholar
Van Hulzen ZJ, Van der Staay FJ. Spatial memory processing during hippocampal long-term potentiation in rats. Physiol Behav. 1991;50(1):121–7.
Article
PubMed
Google Scholar
Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9.
Article
CAS
PubMed
Google Scholar
Glasgow SD, Wong EW, Thompson-Steckel G, Marcal N, Seguela P, Ruthazer ES, et al. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol Brain. 2020;13(1):56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez-Medina JP, Dodia C, Weng L, Mesaros C, Blair IA, Feinstein SI, et al. The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. FASEB J. 2016;30(8):2885–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambruso DR. Peroxiredoxin-6 and NADPH oxidase activity. Methods Enzymol. 2013;527:145–67.
Article
CAS
PubMed
Google Scholar
Qiu LL, Luo D, Zhang H, Shi YS, Li YJ, Wu D, et al. Nox-2-mediated phenotype loss of hippocampal parvalbumin interneurons might contribute to postoperative cognitive decline in aging mice. Front Aging Neurosci. 2016;8:234.
Article
PubMed
PubMed Central
Google Scholar
Wilson C, Nunez MT, Gonzalez-Billault C. Contribution of NADPH oxidase to the establishment of hippocampal neuronal polarity in culture. J Cell Sci. 2015;128(16):2989–95.
CAS
PubMed
Google Scholar
Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol. 2006;26(15):5908–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moridi H, Sarihi A, Habibitabar E, Shateri H, Salehi I, Komaki A, et al. Effects of post-training administration of LY341495, as an mGluR2/3 antagonist on spatial memory deficit in rats fed with high-fat diet. IBRO Rep. 2020;9:241–6.
Article
PubMed
PubMed Central
Google Scholar
Harand C, Bertran F, La Joie R, Landeau B, Mezenge F, Desgranges B, et al. The hippocampus remains activated over the long term for the retrieval of truly episodic memories. PLoS ONE. 2012;7(8):e43495.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience. 2002;113(3):607–15.
Article
CAS
PubMed
Google Scholar
Meiri N, Sun MK, Segal Z, Alkon DL. Memory and long-term potentiation (LTP) dissociated: normal spatial memory despite CA1 LTP elimination with Kv1.4 antisense. Proc Natl Acad Sci USA 1998;95(25):15037–42.
Uetani N, Kato K, Ogura H, Mizuno K, Kawano K, Mikoshiba K, et al. Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J. 2000;19(12):2775–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Alvarez G, Shetty MS, Lu B, Yap KA, Oh-Hora M, Sajikumar S, et al. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. Front Behav Neurosci. 2015;9:180.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19(4):126–30.
Article
CAS
PubMed
Google Scholar
Debanne D, Gahwiler BH, Thompson SM. Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. J Neurosci. 1999;19(24):10664–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen-Vu TB, Zhao GQ, Lahiri S, Kimpo RR, Lee H, Ganguli S, et al. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. Elife. 2017. https://doi.org/10.7554/eLife.20147.
Article
PubMed
PubMed Central
Google Scholar
Pineda VV, Athos JI, Wang H, Celver J, Ippolito D, Boulay G, et al. Removal of Giα1 constraints on adenylyl cyclase in the hippocampus enhances LTP and impairs memory formation. Neuron. 2004;41(1):153–63.
Article
CAS
PubMed
Google Scholar
Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 2004;5(3):173–83.
Article
CAS
PubMed
Google Scholar
Toyoda H, Zhao MG, Xu H, Wu LJ, Ren M, Zhuo M. Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex. Mol Pain. 2007;3:36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaudreault SB, Chabot C, Gratton JP, Poirier J. The caveolin scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor binding properties by inhibiting phospholipase A2 activity. J Biol Chem. 2004;279(1):356–62.
Article
CAS
PubMed
Google Scholar
Besnard A, Caboche J, Laroche S. Recall and reconsolidation of contextual fear memory: differential control by ERK and Zif268 expression dosage. PLoS ONE. 2013;8(8):e72006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaeffer EL, Gattaz WF. Requirement of hippocampal phospholipase A2 activity for long-term memory retrieval in rats. J Neural Transm (Vienna). 2007;114(3):379–85.
Article
CAS
Google Scholar
Béïque JC, Andrade R. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol. 2003;546(Pt 3):859–67.
Article
PubMed
CAS
Google Scholar
Delint-Ramirez I, Salcedo-Tello P, Bermudez-Rattoni F. Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. J Neurochem. 2008;106(4):1658–68.
Article
CAS
PubMed
Google Scholar
Xie F, Padival M, Siegel RE. Association of PSD-95 with ErbB4 facilitates neuregulin signaling in cerebellar granule neurons in culture. J Neurochem. 2007;100(1):62–72.
Article
CAS
PubMed
Google Scholar
Kennedy MB. Synaptic signaling in learning and memory. Cold Spring Harb Perspect Biol. 2013;8(2):a016824.
Article
PubMed
Google Scholar
Asuni AA, Gray B, Bailey J, Skipp P, Perry VH, O’Connor V. Analysis of the hippocampal proteome in ME7 prion disease reveals a predominant astrocytic signature and highlights the brain-restricted production of clusterin in chronic neurodegeneration. J Biol Chem. 2014;289(7):4532–45.
Article
CAS
PubMed
Google Scholar
Pankiewicz JE, Diaz JR, Marta-Ariza M, Lizinczyk AM, Franco LA, Sadowski MJ. Peroxiredoxin 6 mediates protective function of astrocytes in Abeta proteostasis. Mol Neurodegener. 2020;15(1):50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willard SL, Hemby SE, Register TC, McIntosh S, Shively CA. Altered expression of glial and synaptic markers in the anterior hippocampus of behaviorally depressed female monkeys. Neurosci Lett. 2014;563:1–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lechuga-Sancho AM, Arroba AI, Frago LM, Garcia-Caceres C, de Celix AD, Argente J, et al. Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats. Endocrinology. 2006;147(11):5314–24.
Article
CAS
PubMed
Google Scholar