- Micro report
- Open access
- Published:
Impaired mitochondrial accumulation and Lewy pathology in neuron-specific FBXO7-deficient mice
Molecular Brain volume 15, Article number: 54 (2022)
Abstract
Parkinson’s disease, the second most common neurodegenerative disorder, is characterized by the loss of nigrostriatal dopamine neurons. FBXO7 (F-box protein only 7) (PARK15) mutations cause early-onset Parkinson’s disease. FBXO7 is a subunit of the SCF (SKP1/cullin-1/F-box protein) E3 ubiquitin ligase complex, but its neuronal relevance and function have not been elucidated. To determine its function in neurons, we generated neuronal cell-specific FBXO7 conditional knockout mice (FBXO7flox/flox: Nestin-Cre) by crossing previously characterized FBXO7 floxed mice (FBXO7flox/flox) with Nestin-Cre mice (Nestin-Cre). The resultant Fbxo7flox/flox: Nestin-Cre mice showed juvenile motor dysfunction, including hindlimb defects and decreased numbers of dopaminergic neurons. Fragmented mitochondria were observed in dopaminergic and cortical neurons. Furthermore, p62- and synuclein-positive Lewy body-like aggregates were identified in neurons. Our findings highlight the unexpected role of the homeostatic level of p62, which is regulated by a non-autophagic system that includes the ubiquitin–proteasome system, in controlling intracellular inclusion body formation. These data indicate that the pathologic processes associated with the proteolytic and mitochondrial degradation systems play a crucial role in the pathogenesis of PD.
Main text
Autosomal recessive mutations in the FBXO7 (PARK15) gene are involved in a juvenile form of Parkinsonism with heterogenic phenotypes characterized by either a classic Parkinson’s disease (PD) phenotype, pyramidal tract signs only, or by a combination of Parkinsonism and pyramidal signs [1, 2]. FBXO7 is expressed in various types of tissues, including the gray and white matter of the brain [3].
To determine the function of FBXO7 in vivo, we generated FBXO7flox/flox mice. A targeting vector was constructed using 5.0- and 3-kb DNA fragments as the 5′ and 3′ homologous sequences, respectively (Fig. 1A). The linearized targeting vector was transfected into C57BL/6 embryonic stem (ES) cells. Selected clones were screened for homologous recombination by Southern blotting. Using the 5′ external probe and a probe specific for the neo sequence, we confirmed that the clones carried the desired homologous recombination. ES cells derived from these clones were injected into C57BL/6 embryos. Chimeric offspring were crossed with C57BL/6 mice to obtain germline transmission, which was confirmed by Southern blot analysis with the 5′ (Fig. 1B upper panel) and 3′ (Fig. 1B lower panel) probes. Heterozygous mice were then interbred to obtain homozygous knockout and wild-type control mice. All animals were kept in a pathogen- and odor-free environment, which was maintained under a 12-h light/dark cycle at ambient temperature. Procedures were approved by the Animal Experimental Committee of the Juntendo University Graduate School of Medicine and performed in accordance with the guidelines of the National Institutes of Health and the Juntendo University Graduate School of Medicine. Next, we generated neuronal cell-specific FBXO7flox/flox: Nestin-Cre mice by crossing the previously characterized FBXO7flox/flox mice with FBXO7flox/flox: Nestin-Cre mice harboring the Cre recombinase-coding sequence downstream of a characterized fragment of the Nestin promoter, and confirmed that FBXO7 protein levels were decreased in the whole brain of Cre-expressing mice (Fig. 1C).
FBOX7flox/flox: Nestin-Cre mice were viable at birth and indistinguishable in appearance from their littermates, but experienced gradually increasing weight loss (Fig. 1D, E) and had a markedly lower survival rate after birth (Fig. 1F). FBXO7flox/flox: Nestin-Cre mice began to show impairment in motor coordination tasks and motor behavioral deficits, as determined by the footprint test (Fig. 1G) and runway test (Fig. 1H). We first conducted the footprint test, because a short stride is a characteristic of PD, including in patients with PARK15 mutations. FBXO7flox/flox: Nestin-Cre mice had a shorter stride than FBXO7flox/flox mice (Fig. 1G). Regarding the runway test, while FBXO7flox/flox mice exhibited well-coordinated movement and almost no slips of the forepaw or hindpaw from the beam, FBXO7flox/flox: Nestin-Cre mice could hardly move on the beam and slipped frequently (Fig. 1H). In particular, the hindpaws of FBXO7flox/flox: Nestin-Cre mice often slipped off the beam (Fig. 1I). Gait disturbance progressed, and by the terminal stage, the majority of affected mice could hardly move.
Mitochondrial damage and dysfunction in the substantia nigra have been previously reported in patients with sporadic PD [4, 5]. These observations support the notion that aberrant mitochondrial function is a critical contributor to pathological neuronal degeneration. Accumulating knowledge regarding PINK1 and Parkin, both of which are associated with mitochondria, has increased our understanding of mitochondrial quality control [6, 7].
FBXO7 and Parkin are interaction partners. FBXO7 is recruited to damaged mitochondria, and is required for the successful recruitment of Parkin. FBXO7 also binds to PINK1, and PINK1, Parkin, and FBXO7 act in concert to control the events leading to mitophagy. Interestingly, the expression of human FBXO7 in a Parkin mutant fly model rescues its phenotype, which is characterized by mitochondrial disruption and locomotor defects [8].
To characterize the damaged mitochondria in FBXO7flox/flox: Nestin-Cre mice, we performed immunohistological (Fig. 1J) and ultrastructural (Fig. 1K) analysis of cortical and dopaminergic neurons of 3-week-old mice. We observed small, round, fragmented mitochondria in these neurons in FBXO7flox/flox: Nestin-Cre mice but not in FBXO7flox/flox mice. Precise quantification revealed that the mitochondrial area was reduced in cortical and dopaminergic cells (Fig. 1L). Together, these observations suggest that mitochondrial fragmentation might be facilitated in FBXO7-deficient mice. In order for damaged mitochondria to be degraded by autophagy, they must be segregated by fission [9]. Our in vivo results are reasonable if FBXO7-mediated mitophagy contributes to mitochondrial degradation systems.
To assess the pathological contribution of damaged mitochondria, we compared tyrosine hydroxylase (TH)-immunoreactive neurons between FBXO7flox/flox: Nestin-Cre and control mice. As demonstrated in the runway test (Fig. 1H, I), FBXO7flox/flox: Nestin-Cre mice exhibited locomotor dysfunction. These FBXO7flox/flox: Nestin-Cre mice had fewer TH neurons in the central portion of the substantia nigra (SN) pars compacta (Fig. 1M, N), where the reduction in TH cell number was most prominent in other PD model mice [3, 10,11,12,13].
Finally, to identify the relationship between our model mice and PD, we conducted immunohistological and blot analysis in the brain. Interestingly, in FBXO7flox/flox: Nestin-Cre mice we identified p62-positive aggregates (Fig. 1O) that exhibited a significant increase in p62 levels (Fig. 1P) and synuclein colocalization (Fig. 1Q). These pathologies were identified in the dopaminergic neurons (Fig. 1R), including internal neurons (Fig. 1R arrows). Because p62 aggregates were not seen in endothelial cells (Fig. 1S) or microglia (Fig. 1T), FBXO7flox/flox: Nestin-Cre mice were thought to demonstrate a neuron-specific phenotype. Further research is needed, but our results suggest that loss of FBXO7 may affect p62 and synuclein proteolysis, and impaired mitochondria elimination.
Availability of data and materials
All data generated or analyzed during this study are included in this published article.
Abbreviations
- PD:
-
Parkinson’s disease
- EO-PD:
-
Early-onset Parkinson’s disease
- FBXO7:
-
F-box protein only 7
- UPS:
-
Ubiquitin–proteasome system
- TH:
-
Tyrosine hydroxylase
- SN:
-
Substantia nigra
- ES:
-
Embryonic stem
- VTA:
-
Ventral tegmental area
- SNpc:
-
Substantia nigra pars compacta
References
Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet. 2008;82:1375–84.
Di Fonzo A, Dekker MC, Montagna P, Baruzzi A, Yonova EH, Correia Guedes L, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology. 2009;72:240–5.
Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008–25.
Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem. 1990;54:823–7.
Keeney PM, Xie J, Capaldi RA, Bennett JP Jr. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 2006;26:5256–64.
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183:795–803.
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189:211–21.
Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, et al. The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci. 2013;16:1257–65.
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27:433–46.
Sato S, Uchihara T, Fukuda T, Noda S, Kondo H, Saiki S, et al. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci Rep. 2018;8:2813.
Noda S, Sato S, Fukuda T, Tada N, Uchiyama Y, Tanaka K, et al. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice. Neurobiol Dis. 2019;136: 104717.
Sato S, Noda S, Torii S, Amo T, Ikeda A, Funayama M, et al. Homeostatic p62 levels and inclusion body formation in CHCHD2 knockout mice. Hum Mol Genet. 2021;30:443–53.
Stott SR, Randle SJ, Al Rawi S, Rowicka PA, Harris R, Mason B, et al. Loss of FBXO7 results in a Parkinson’s-like dopaminergic degeneration via an RPL23-MDM2-TP53 pathway. J Pathol. 2019;249:241–54.
Acknowledgements
We thank Dr. Souichiro Kakuta (Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine) for technical assistance with electron microscopy.
Funding
This work was supported by a KAKENHI Grant-in-Aid for Scientific Research from JSPS (19K07850).
Author information
Authors and Affiliations
Contributions
SS and NH designed the study, analyzed the data, and wrote the paper. SN, TF, US, and NT performed the experiments. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
About this article
Cite this article
Noda, S., Sato, S., Fukuda, T. et al. Impaired mitochondrial accumulation and Lewy pathology in neuron-specific FBXO7-deficient mice. Mol Brain 15, 54 (2022). https://doi.org/10.1186/s13041-022-00936-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13041-022-00936-5