Clarkson TW, Magos L: The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006, 36: 609-662. 10.1080/10408440600845619.
Article
CAS
PubMed
Google Scholar
Clarkson TW: The Three Modern Faces of Mercury. Environ Health Perspect. 2002, 110 (Suppl 1): 11-23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Choi BH: Kim R C and Peckham N H: Hydrocephalus Following Prenatal Methylmercury Poisoning. Acta Neuropathologica. 1988, 75: 325-330. 10.1007/BF00687784.
Article
CAS
PubMed
Google Scholar
Clarkson TW, Magos L, Myers GJ: The Toxicology of Mercury – Current Exposures and Clinical Manifestations. N Engl J Med. 2003, 349: 1731-1737. 10.1056/NEJMra022471.
Article
CAS
PubMed
Google Scholar
Meyer-Baron M, Schaeper M, Seeber A: A Meta-Analysis for Neurobehavioural Results Due to Occupational Mercury Exposure. Arch Toxicol. 2002, 76: 127-136. 10.1007/s00204-002-0327-9.
Article
CAS
PubMed
Google Scholar
Mutter J, Naumann J, Schneider R, Walach H, Haley B: Mercury and Autism: Accelerating Evidence?. Neuroendocrinol Lett. 2005, 26: 439-446.
PubMed
Google Scholar
Ferraro L, Tomasini MC, Tanganelli S, Mazza R, Coluccia A, Carratu MR, Gaetani S, Cuomo V, Antonelli T: Developmental exposure to Methylmercury elicits early cell death in the cerebral cortex and long-term memory deficits in the rat. Int J Dev Neurosci. 2009, 27: 165-174. 10.1016/j.ijdevneu.2008.11.004.
Article
CAS
PubMed
Google Scholar
Eto K, Yasutake A, Kuwana T, Korogi Y, Akima M, Shimozeki T, Tokunaqa H, Kaneko Y: Methylmercury poisoning in common marmosets–a study of selective vulnerability within the cerebral cortex. Toxicol Pathol. 2001, 29 (5): 565-573. 10.1080/019262301317226375.
Article
CAS
PubMed
Google Scholar
Fonfria E, Vilaro MT, Babot Z, Rodriguez-Farre E, Sunol C: Mercury Compounds Disrupt Neuronal Glutamate Transport in Cultured Mouse Cerebellar Granule Cells. J Neurosci Res. 2005, 79: 545-553. 10.1002/jnr.20375.
Article
CAS
PubMed
Google Scholar
Korogi Y, Takahashi M, Shinzato J, Okajima T, Farina MR, et al: Findings in 7 Patients With Organic Mercury-Poisoning (Minamata-Disease). Am J Neuroradiol. 2011, 1994 (15): 1575-1578.
Google Scholar
Farina M, Rocha JBT, Aschner M: Mechanisms of Methylmercury- Induced Neurotoxicity: Evidence From Experimental Studies. Life Sci. 2011, 89: 555-563. 10.1016/j.lfs.2011.05.019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pekel M, Platt B, Busselberg D: Mercury (Hg2+) Decreases Voltage-Gated Calcium-Channel Currents in Rat Drg and Aplysia Neurons. Brain Research. 1993, 632: 121-126. 10.1016/0006-8993(93)91146-J.
Article
CAS
PubMed
Google Scholar
Peng SQ, Hajela RK, Atchison WD: Effects of Methylmercury on Human Neuronal L-Type Calcium Channels Transiently Expressed in Human Embryonic Kidney Cells (HEK-293). J Pharmacol Exp Ther. 2002, 302: 424-432. 10.1124/jpet.102.032748.
Article
CAS
PubMed
Google Scholar
Sirois JE, Atchison WD: Effects of Mercurials on Ligand- and Voltage-Gated Ion Channels: A Review. Neuro toxicology. 1996, 17: 63-84.
CAS
Google Scholar
Castoldi AF, Coccini T, Ceccatelli S, Manzo L: Neurotoxicity and Molecular Effects of Methylmercury. Brain Res Bull. 2001, 55: 197-203. 10.1016/S0361-9230(01)00458-0.
Article
CAS
PubMed
Google Scholar
Yuan Y, Atchison WD: Methylmercury Differentially Affects GABAA Receptor-Mediated Spontaneous IPSCs in Purkinje and Granule Cells of Rat Cerebellar Slices. Journal of Physiology-London. 2003, 550: 191-204. 10.1113/jphysiol.2003.040543.
Article
CAS
Google Scholar
Yuan YK, Atchison WD: Methylmercury Induces a Spontaneous, Transient Slow Inward Chloride Current in Purkinje Cells of Rat Cerebellar Slices. J Pharmacol Exp Ther. 2005, 313: 751-764.
Article
CAS
PubMed
Google Scholar
Castoldi AF, Barni S, Turin I, Gandini C, Manzo L: Early Acute Necrosis, Delayed Apoptosis and Cytoskeletal Breakdown in Cultured Cerebellar Granule Neurons Exposed to Methylmercury. J Neurosci Res. 2000, 59: 775-787. 10.1002/(SICI)1097-4547(20000315)59:6<775::AID-JNR10>3.0.CO;2-T.
Article
CAS
PubMed
Google Scholar
Juarez BI, Portillo-Salazar H, Gonzalez-Amaro R, Mandeville P, Aguirre JR, Jimenez ME: Participation of N-Methyl-D-Aspartate Receptors on Methylmercury-Induced DNA Damage in Rat Frontal Cortex. Toxicology. 2005, 207: 223-229. 10.1016/j.tox.2004.09.007.
Article
CAS
PubMed
Google Scholar
Insug O, Datar S, Koch CJ, Shapiro IM, Shenker BJ: Mercuric Compounds Inhibit Human Monocyte Function by Inducing Apoptosis: Evidence for Formation of Reactive Oxygen Species, Development of Mitochondrial Membrane Permeability Transition and Loss of Reductive Reserve. Toxicology. 1997, 124: 211-224. 10.1016/S0300-483X(97)00153-4.
Article
CAS
PubMed
Google Scholar
Limke TL, Atchison WD: Acute Exposure to Methylmercury Opens the Mitochondrial Permeability Transition Pore in Rat Cerebellar Granule Cells. Toxicol Appl Pharmacol. 2002, 178: 52-61. 10.1006/taap.2001.9327.
Article
CAS
PubMed
Google Scholar
Atchison WD, Hare MF: Mechanisms of Methylmercury-Induced Neurotoxicity. FASEB J. 1994, 8: 622-629.
CAS
PubMed
Google Scholar
Aschner M, Yao CP, Allen JW, Tan KH: Methylmercury Alters Glutamate Transport in Astrocytes. Neurochem Int. 2000, 37: 199-206. 10.1016/S0197-0186(00)00023-1.
Article
CAS
PubMed
Google Scholar
Allen JW, Mutkus LA, Aschner M: Mercuric Chloride, but Not Methylmercury, Inhibits Glutamine Synthetase Activity in Primary Cultures of Cortical Astrocytes. Brain Research. 2001, 891: 148-157. 10.1016/S0006-8993(00)03185-1.
Article
CAS
PubMed
Google Scholar
Brookes N: Invitro Evidence for the Role of Glutamate in the Cns Toxicity of Mercury. Toxicology. 1992, 76: 245-256. 10.1016/0300-483X(92)90193-I.
Article
CAS
PubMed
Google Scholar
Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Evans RD, O'Brien M, Chan HM: Decreased N-Methyl-D-Aspartic Acid (NMDA) Receptor Levels Are Associated With Mercury Exposure in Wild and Captive Mink. Neuro toxicology. 2007, 28: 587-593.
CAS
Google Scholar
Ndountse LT, Chan HM: Methylmercury Increases N-Methyl-D-Aspartate Receptors on Human SH-5Y5Y Neuroblastoma Cells Leading to Neurotoxicity. Toxicology. 2008, 249: 251-255. 10.1016/j.tox.2008.05.011.
Article
CAS
PubMed
Google Scholar
Miyamoto K, Nakanishi H, Moriguchi S, Fukuyama N, Eto K, Wakamiya J, Murao K, Arimura K, Osame M: Involvement of Enhanced Sensitivity of N-Methyl-D- Aspartate Receptors in Vulnerability of Developing Cortical Neurons to Methylmercury Neurotoxicity. Brain Research. 2001, 901: 252-258. 10.1016/S0006-8993(01)02281-8.
Article
CAS
PubMed
Google Scholar
Aschner M, Aschner JL: Mercury Neurotoxicity - Mechanisms of Blood–brain- Barrier Transport. Neuroscience and Bio behavioral Reviews. 1990, 14: 169-176. 10.1016/S0149-7634(05)80217-9.
Article
CAS
Google Scholar
Charleston JS, Body RL, Bolender RP, Mottet NK, Vahter ME, Burbacher TM: Changes in the Number of Astrocytes and Microglia in the Thalamus of the Monkey Macaca Fascicularis Following Long-Term Subclinical Methylmercury Exposure. Neuro toxicology. 1996, 17: 127-138.
CAS
Google Scholar
Castoldi AF, Coccini T, Ceccatelli S, Manzo L: Neurotoxicity and Molecular Effects of Methylmercury. Brain Res Bull. 2001, 55: 197-203. 10.1016/S0361-9230(01)00458-0.
Article
CAS
PubMed
Google Scholar
Sziics A, Angiello C, Salanki J, Carpenter DO: Effects of Inorganic Mercury and Methylmercury on the Ionic Currents of Cultured Rat Hippocampal Neurons. Cell Mol Neurobiol. 1997, 17: 273-288. 10.1023/A:1026338217097.
Article
Google Scholar
Friberg L, Mottet NK: Accumulation of Methylmercury and Inorganic Mercury in the Brain. Biological Trace Element Research. 1989, 21: 201-206. 10.1007/BF02917253.
Article
CAS
PubMed
Google Scholar
Gopal KV: Neurotoxic Effects of Mercury on Auditory Cortex Networks Growing on Microelectrode Arrays: a Preliminary Analysis. Neuro toxicology and Teratology. 2003, 25: 365-369. 10.1016/S0892-0362(03)00037-0.
Article
CAS
Google Scholar
Hock C, Drasch G, Golombowski S, Muller-Spahn F, Willershausen-Zonnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM: Increased Bleed Mercury Levels in Patients With Alzheimer's Disease. Journal of Neural Transmission. 1998, 105: 59-68. 10.1007/s007020050038.
Article
CAS
PubMed
Google Scholar
Mutter J, Naumann J, Schneider R, Walach H: Mercury and Alzheimer's Disease. Fortschritte der Neurologie Psychiatrie. 2007, 75: 528-540. 10.1055/s-2007-959237.
Article
CAS
PubMed
Google Scholar
Mutter J, Naumann J, Schneider R, Walach H, Haley B: Mercury and Autism: Accelerating Evidence?. Neuroendocrinol Lett. 2005, 26: 439-446.
PubMed
Google Scholar
Sieger FAS, Silva GAD, Ardila GP, Garcia RG: Mercury Chronic Toxicity Might Be Associated to Some Cases of Hydrocephalus in Adult Humans?. Medical Hypotheses. 2012, 79: 13-16. 10.1016/j.mehy.2012.03.022.
Article
Google Scholar
Leong CCW, Syed NI, Lorscheider FL: Retrograde Degeneration of Neurite Membrane Structural Integrity of Nerve Growth Cones Following in Vitro Exposure to Mercury. Neuro report. 2001, 12: 733-737.
CAS
Google Scholar
Olivieri G, Brack C, Muller-Spahn F, Stahelin HB, Herrmann M, Renard P, Brockhaus M, Hock C: Mercury Induces Cell Cytotoxicity and Oxidative Stress and Increases Beta-Amyloid Secretion and Tau Phosphorylation in SHSY5Y Neuroblastoma Cells. J Neurochem. 2000, 74: 231-236.
Article
CAS
PubMed
Google Scholar
Poulain FE, Sobel A: The Microtubule Network and Neuronal Morphogenesis: Dynamic and Coordinated Orchestration Through Multiple Players. Mol Cell Neurosci. 2010, 43: 15-32. 10.1016/j.mcn.2009.07.012.
Article
CAS
PubMed
Google Scholar
Feng J: Microtubule: A Common Target for Parkin and Parkinson's Disease Toxins. Neuroscientist. 2006, 12: 469-476. 10.1177/1073858406293853.
Article
CAS
PubMed
Google Scholar
Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S: Neuro behavioural and Molecular Changes Induced by Methylmercury Exposure During Development. Neurotox Res. 2007, 11: 241-260. 10.1007/BF03033570.
Article
CAS
PubMed
Google Scholar
Ankarcrona M, Dypbukt JM, Orrenius S, Nicotera P: Calcineurin and Mitochondrial Function in Glutamate-Induced Neuronal Cell Death. FEBS Lett. 1996, 394: 321-324. 10.1016/0014-5793(96)00959-3.
Article
CAS
PubMed
Google Scholar
Chung RS, McCormack GH, King AE, West AK, Vickers JC: Glutamate Induces Rapid Loss of Axonal Neuro filament Proteins From Cortical Neurons in Vitro. Exp Neurol. 2005, 193: 481-488. 10.1016/j.expneurol.2005.01.005.
Article
CAS
PubMed
Google Scholar
Slemmer JE, De Zeeuw CI, Weber JT: Don't Get Too Excited: Mechanisms of Glutamate-Mediated Purkinje Cell Death. Creating Coordination in the Cerebellum. 2005, 148: 367-390.
Article
CAS
Google Scholar
Blankenship AG, Feller MB: Mechanisms Underlying Spontaneous Patterned Activity in Developing Neural Circuits. Nat Rev Neurosci. 2010, 11: 18–-29.
Article
PubMed Central
PubMed
Google Scholar
Rao A, Craig AM: Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons. Neuron. 1997, 19: 801-812. 10.1016/S0896-6273(00)80962-9.
Article
CAS
PubMed
Google Scholar
Shu YS, Hasenstaub A, McCormick DA: Turning on and Off Recurrent Balanced Cortical Activity. Nature. 2003, 423: 288-293. 10.1038/nature01616.
Article
CAS
PubMed
Google Scholar
Thivierge JP: How Does Non-Random Spontaneous Activity Contribute to Brain Development?. Neural Networks. 2009, 22: 901-912. 10.1016/j.neunet.2009.01.001.
Article
PubMed
Google Scholar
Pivovarova NB, Nguyen HV, Winters CA, Brantner CA, Smith CL, Andrews SB: Excitotoxic Calcium Overload in a Subpopulation of Mitochondria Triggers Delayed Death in Hippocampal Neurons. J Neurosci. 2004, 24: 5611-5622. 10.1523/JNEUROSCI.0531-04.2004.
Article
CAS
PubMed
Google Scholar
Orrenius S, Zhivotovsky B, Nicotera P: Regulation of Cell Death: The Calcium-Apoptosis Link. Nat Rev Mol Cell Biol. 2003, 4: 552-565. 10.1038/nrm1150.
Article
CAS
PubMed
Google Scholar
Mattson MP, Duan WZ: "Apoptotic" Biochemical Cascades in Synaptic Compartments: Roles in Adaptive Plasticity and Neurodegenerative Disorders. J Neurosci Res. 1999, 58: 152-166. 10.1002/(SICI)1097-4547(19991001)58:1<152::AID-JNR15>3.0.CO;2-V.
Article
CAS
PubMed
Google Scholar
Pendergrass JC, Haley BE: Inhibition of Brain Tubulin-Guanosine 5'-Triphosphate Interactions by Mercury: Similarity to Observations in Alzheimer's Diseased Brain. Metal Ions in Biological Systems. 1997, 34: 461-478.
CAS
PubMed
Google Scholar
de Assis GPS, Silva CEC, Stefanon I, Vassallo DV: Effects of Small Concentrations of Mercury on the Contractile Activity of the Rat Ventricular Myocardium. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2003, 134: 375-383. 10.1016/S1532-0456(03)00005-X.
Article
Google Scholar
Wiggers GA, Stefanon I, Padilha AS, Pecanha FM, Vassallo DV, Oliveira EM: Low Nanomolar Concentration of Mercury Chloride Increases Vascular Reactivity to Phenylephrine and Local Angiotensin Production in Rats. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 2008, 147: 252-260. 10.1016/j.cbpc.2007.10.003.
Article
Google Scholar
Xu F, Luk C, Richard MP, Zaidi W, Farkas S, Getz A, Lee A, van MJ, Syed NI: Antidepressant Fluoxetine Suppresses Neuronal Growth From Both Vertebrate and Invertebrate Neurons and Perturbs Synapse Formation Between Lymnaea Neurons. Eur J Neurosci. 2018, 31: 994-1005.
Article
Google Scholar
Farina M, Rocha JBT, Aschner M: Mechanisms of Methylmercury- Induced Neurotoxicity: Evidence From Experimental Studies. Life Sci. 2011, 89: 555-563. 10.1016/j.lfs.2011.05.019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kater SB, Mills LR: Regulation of Growth Cone Behavior by Calcium. J Neurosci. 1991, 11: 891-899.
CAS
PubMed
Google Scholar
Koike T: Nerve Growth Factor-Induced Neurite Outgrowth of Rat Pheochromocytoma PC-12 Cells - Dependence on Extracellular Mg2+ and Ca2+. Brain Research. 1983, 289: 293-303. 10.1016/0006-8993(83)90030-6.
Article
CAS
PubMed
Google Scholar
Schubert D, Lacorbiere M, Whitlock C, Stallcup W: Alterations in the surface properties of cells responsive to nerve growth factor. Nature. 1978, 273: 718-721. 10.1038/273718a0.
Article
CAS
PubMed
Google Scholar
Almohanna FA, Cave J, Bolsover SR: A Narrow Window of Intracellular Calcium-Concentration Is Optimal for Neurite Outgrowth in Rat Sensory Neurons. Developmental Brain Research. 1992, 70: 287-290. 10.1016/0165-3806(92)90209-F.
Article
CAS
Google Scholar
Mattson MP: Calcium As Sculptor and Destroyer of Neural Circuitry. Exp Gerontol. 1992, 27: 29-49. 10.1016/0531-5565(92)90027-W.
Article
CAS
PubMed
Google Scholar
Mattson MP, Kater SB: Calcium Regulation of Neurite Elongation and Growth Cone Motility. J Neurosci. 1987, 7: 4034-4043.
CAS
PubMed
Google Scholar
Miura K, Inokawa M, Imura N: Effects of Methylmercury and Some Metal-Ions on Microtubule Networks in Mouse Glioma-Cells and Invitro Tubulin Polymerization. Toxicol Appl Pharmacol. 1984, 73: 218-231. 10.1016/0041-008X(84)90327-2.
Article
CAS
PubMed
Google Scholar
Stoiber T, Degen GH, Bolt HM, Unger E: Interaction of Mercury(II) With the Microtubule Cytoskeleton in IMR-32 Neuroblastoma Cells. Toxicol Lett. 2004, 151: 99-104. 10.1016/j.toxlet.2003.11.017.
Article
CAS
PubMed
Google Scholar
Cadrin M, Wasteneys GO, Jonesvilleneuve EMV, Brown DL, Reuhl KR: Effects of Methylmercury on Retinoic Acid-Induced Neuroectodermal Derivatives of Embryonal Carcinoma-Cells. Cell Biology and Toxicology. 1988, 4: 61-80. 10.1007/BF00141287.
Article
CAS
PubMed
Google Scholar
Weisenbe RC: Microtubule Formation In-Vitro in Solutions Containing LowCalcium Concentrations. Science. 1972, 177: 1104-10.1126/science.177.4054.1104.
Article
Google Scholar
Mattson MP, Engle MG, Rychlik B: Effects of Elevated Intracellular Calcium Levels on the Cytoskeleton and Tau in Cultured Human Cortical- Neurons. Mol Chem Neuropathol. 1991, 15: 117-142. 10.1007/BF03159951.
Article
CAS
PubMed
Google Scholar
Aizenman E, Lipton SA, Loring RH: Selective Modulation of Nmda Responses by Reduction and Oxidation. Neuron. 1989, 2: 1257-1263. 10.1016/0896-6273(89)90310-3.
Article
CAS
PubMed
Google Scholar
Lazarewicz JW, Wroblewski JT, Palmer ME, Costa E: Reduction of Disulfide Bonds Activates Nmda-Sensitive Glutamate Receptors in Primary Cultures of Cerebellar Granule Cells. Neurosci Res Commun. 1989, 4: 91-97.
CAS
Google Scholar
Tang LH, Aizenman E: The Modulation of N-Methyl-D-Aspartate Receptors by Redox and Alkylating Reagents in Rat Cortical-Neurons In vitro. Journal of Physiology-London. 1993, 465: 303-323.
Article
CAS
Google Scholar