Lisman J, Yasuda R, Raghavachari S: Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci. 2012, 13 (3): 169-182.
PubMed Central
CAS
Google Scholar
Faas G, et al: Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci. 2011, 14 (3): 301-304. 10.1038/nn.2746.
PubMed Central
CAS
Google Scholar
Benke TA, et al: Modulation of AMPA receptor unitary conductance by synaptic activity. Nature. 1998, 393 (6687): 793-797. 10.1038/31709.
CAS
Google Scholar
Kristensen AS, et al: Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci. 2011, 14 (6): 727-35. 10.1038/nn.2804.
PubMed Central
CAS
Google Scholar
Tomita S, et al: Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron. 2005, 45 (2): 269-77. 10.1016/j.neuron.2005.01.009.
CAS
Google Scholar
Opazo P, et al: CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron. 2010, 67 (2): 239-252. 10.1016/j.neuron.2010.06.007.
CAS
Google Scholar
Omkumar RV, et al: Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 1996, 271 (49): 31670-31678. 10.1074/jbc.271.49.31670.
CAS
Google Scholar
Strack S, Colbran RJ: Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998, 273 (33): 20689-20692. 10.1074/jbc.273.33.20689.
CAS
Google Scholar
Gardoni F, et al: Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem. 1998, 71 (4): 1733-1741.
CAS
Google Scholar
Leonard AS, et al: Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA. 1999, 96 (6): 3239-3244. 10.1073/pnas.96.6.3239.
PubMed Central
CAS
Google Scholar
Bayer KU, et al: Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci. 2006, 26 (4): 1164-1174. 10.1523/JNEUROSCI.3116-05.2006.
PubMed Central
CAS
Google Scholar
Appleby VJ, et al: LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. J Neurochem. 2011, 116 (4): 530-543. 10.1111/j.1471-4159.2010.07133.x.
CAS
Google Scholar
Otmakhov N, et al: Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2004, 24 (42): 9324-31. 10.1523/JNEUROSCI.2350-04.2004.
CAS
Google Scholar
Zhang YP, Holbro N, Oertner TG: Optical induction of plasticity at single synapses reveals input-specific accumulation of alphaCaMKII. Proc Natl Acad Sci USA. 2008, 105 (33): 12039-44. 10.1073/pnas.0802940105.
PubMed Central
CAS
Google Scholar
Lee SJ, Yasuda R: Spatiotemporal Regulation of Signaling in and out of Dendritic Spines: CaMKII and Ras. The open neuroscience journal. 2009, 3: 117-127. 10.2174/1874082000903020117.
PubMed Central
CAS
Google Scholar
Bayer KU, et al: Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001, 411 (6839): 801-5. 10.1038/35081080.
CAS
Google Scholar
Feng B, Raghavachari S, Lisman J: Quantitative estimates of the cytoplasmic, PSD, and NMDAR-bound pools of CaMKII in dendritic spines. Brain Res. 2011, 1419: 46-52.
PubMed Central
CAS
Google Scholar
Tanaka J-I, et al: Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science. 2008, 319 (5870): 1683-1687. 10.1126/science.1152864.
PubMed Central
CAS
Google Scholar
Fukunaga K, et al: Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1993, 268 (11): 7863-7.
CAS
Google Scholar
Barria A, Malinow R: NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005, 48 (2): 289-301. 10.1016/j.neuron.2005.08.034.
CAS
Google Scholar
Strack S, McNeill RB, Colbran RJ: Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2000, 275 (31): 23798-806. 10.1074/jbc.M001471200.
CAS
Google Scholar
Halt A, et al: CaMKII binding to GluN2B is critical during memory consolidation. EMBO J. 2012, 31 (5): 1203-1216. 10.1038/emboj.2011.482.
PubMed Central
CAS
Google Scholar
Zhou Y, et al: Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J Neurosci. 2007, 27 (50): 13843-13853. 10.1523/JNEUROSCI.4486-07.2007.
CAS
Google Scholar
Pi HJ, et al: CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proc Natl Acad Sci USA. 2010, 107 (32): 14437-42. 10.1073/pnas.1009268107.
PubMed Central
CAS
Google Scholar
Vest RS, et al: Dual mechanism of a natural CaMKII inhibitor. Mol Biol Cell. 2007, 18 (12): 5024-33. 10.1091/mbc.E07-02-0185.
PubMed Central
CAS
Google Scholar
Chang BH, Mukherji S, Soderling TR: Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci USA. 1998, 95 (18): 10890-5. 10.1073/pnas.95.18.10890.
PubMed Central
CAS
Google Scholar
Sanhueza M, et al: Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J Neurosci. 2011, 31 (25): 9170-9178. 10.1523/JNEUROSCI.1250-11.2011.
PubMed Central
CAS
Google Scholar
Dosemeci A, et al: The effect of CaMKII inhibitor tatCN21 on the re-distribution of CaMKII and SynGAP in hippocampal neurons under excitatory conditions. SFN Program#/Poster#: 43.15/C53. In Society for Neuroscience. 2012, New Orleans
Google Scholar
Otmakhov N, Griffith LC, Lisman JE: Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J Neurosci. 1997, 17 (14): 5357-5365.
CAS
Google Scholar
Chen HX, et al: Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?. J Neurophysiol. 2001, 85 (4): 1368-1376.
CAS
Google Scholar
Mullasseril P, et al: A structural mechanism for maintaining the ‘on-state’ of the CaMKII memory switch in the post-synaptic density. J Neurochem. 2007, 103 (1): 357-64.
PubMed Central
CAS
Google Scholar
Gruart A, Munoz MD, Delgado-Garcia JM: Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006, 26 (4): 1077-87. 10.1523/JNEUROSCI.2834-05.2006.
CAS
Google Scholar
Whitlock JR, et al: Learning induces long-term potentiation in the hippocampus. Science. 2006, 313 (5790): 1093-7. 10.1126/science.1128134.
CAS
Google Scholar
Liao D, Jones A, Malinow R: Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus. Neuron. 1992, 9 (6): 1089-1097. 10.1016/0896-6273(92)90068-O.
CAS
Google Scholar
Debanne D, Gahwiler BH, Thompson SM: Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1999, 19 (24): 10664-71.
CAS
Google Scholar
Gouet C, et al: On the Mechanism of Synaptic Depression Induced by CaMKIIN, an Endogenous Inhibitor of CaMKII. PLoS One. 2012, 7 (11): e49293-10.1371/journal.pone.0049293.
PubMed Central
CAS
Google Scholar
Petralia RS, et al: Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci. 2005, 29 (3): 436-52. 10.1016/j.mcn.2005.03.013.
PubMed Central
CAS
Google Scholar
Swulius MT, et al: Structure and composition of the postsynaptic density during development. J Comp Neurol. 2010, 518 (20): 4243-60. 10.1002/cne.22451.
PubMed Central
CAS
Google Scholar
Bailey CH, Kandel ER: Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia. Prog Brain Res. 2008, 169: 179-198.
CAS
Google Scholar
Bourne JN, Harris KM: Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus. 2011, 21 (4): 354-73. 10.1002/hipo.20768.
PubMed Central
CAS
Google Scholar
Frey U, Morris RG: Synaptic tagging and long-term potentiation. Nature. 1997, 385 (6616): 533-536. 10.1038/385533a0.
CAS
Google Scholar
Garic A, et al: CaMKII activation is a novel effector of alcohol’s neurotoxicity in neural crest stem/progenitor cells. J Neurochem. 2011, 118 (4): 646-57. 10.1111/j.1471-4159.2011.07273.x.
PubMed Central
CAS
Google Scholar
Redondo RL, et al: Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2010, 30 (14): 4981-9. 10.1523/JNEUROSCI.3140-09.2010.
CAS
Google Scholar
Bozdagi O, et al: Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron. 2000, 28 (1): 245-59. 10.1016/S0896-6273(00)00100-8.
CAS
Google Scholar
Bozdagi O, et al: Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2010, 30 (30): 9984-9. 10.1523/JNEUROSCI.1223-10.2010.
CAS
Google Scholar
Tang L, Hung CP, Schuman EM: A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron. 1998, 20 (6): 1165-75. 10.1016/S0896-6273(00)80497-3.
CAS
Google Scholar
Mendez P, et al: N-cadherin mediates plasticity-induced long-term spine stabilization. J Cell Biol. 2010, 189 (3): 589-600. 10.1083/jcb.201003007.
PubMed Central
CAS
Google Scholar
Walikonis RS, et al: Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2001, 21 (2): 423-33.
CAS
Google Scholar
Robison AJ, et al: Multivalent Interactions of Calcium/Calmodulin-dependent Protein Kinase II with the Postsynaptic Density Proteins NR2B, Densin-180, and α-Actinin-2. J Biol Chem. 2005, 280 (42): 35329-35336. 10.1074/jbc.M502191200.
CAS
Google Scholar
Izawa I, et al: Densin-180 interacts with delta-catenin/neural plakophilin-related armadillo repeat protein at synapses. J Biol Chem. 2002, 277 (7): 5345-50. 10.1074/jbc.M110052200.
CAS
Google Scholar
Brigidi GS, Bamji SX: Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol. 2011, 21 (2): 208-14. 10.1016/j.conb.2010.12.004.
CAS
Google Scholar
Lisman JE, Harris KM: Quantal analysis and synaptic anatomy–integrating two views of hippocampal plasticity. Trends Neurosci. 1993, 16 (4): 141-7. 10.1016/0166-2236(93)90122-3.
CAS
Google Scholar
Lisman J: The pre/post LTP debate. Neuron. 2009, 63 (3): 281-284. 10.1016/j.neuron.2009.07.020.
CAS
Google Scholar
Lisman J, Raghavachari S: A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Science’s signal transduction knowledge environment. 2006, 2006 (356): re11-re11.
Google Scholar
Silverman JB, et al: Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein-AMPA receptor-binding protein complexes. J Neurosci. 2007, 27 (32): 8505-8516. 10.1523/JNEUROSCI.1395-07.2007.
CAS
Google Scholar
DeSouza S, et al: Differential Palmitoylation Directs the AMPA Receptor-Binding Protein ABP to Spines or to Intracellular Clusters. J Neurosci. 2002, 22 (9): 3493-3503.
CAS
Google Scholar
Ochiishi T, et al: Regulation of AMPA receptor trafficking by δ-catenin. Mol Cell Neurosci. 2008, 39 (4): 499-507. 10.1016/j.mcn.2008.06.002.
CAS
Google Scholar
Israely I, et al: Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction. Current biology: CB. 2004, 14 (18): 1657-63. 10.1016/j.cub.2004.08.065.
CAS
Google Scholar
Saglietti L, et al: Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron. 2007, 54 (3): 461-77. 10.1016/j.neuron.2007.04.012.
CAS
Google Scholar
Zhou Z, et al: GluA2 (GluR2) regulates metabotropic glutamate receptor-dependent long-term depression through N-cadherin-dependent and cofilin-mediated actin reorganization. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2011, 31 (3): 819-33. 10.1523/JNEUROSCI.3869-10.2011.
CAS
Google Scholar
Vitureira N, et al: Differential control of presynaptic efficacy by postsynaptic N-cadherin and [beta]-catenin. Nat Neurosci. 2012, 15 (1): 81-89.
CAS
Google Scholar
Lu FM, Hawkins RD: Presynaptic and postsynaptic Ca(2+) and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc Natl Acad Sci USA. 2006, 103 (11): 4264-9. 10.1073/pnas.0508162103.
PubMed Central
CAS
Google Scholar
Shakiryanova D, et al: Differential control of presynaptic CaMKII activation and translocation to active zones. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2011, 31 (25): 9093-100. 10.1523/JNEUROSCI.0550-11.2011.
CAS
Google Scholar
Jalan-Sakrikar N, et al: Substrate-selective and calcium-independent activation of CaMKII by alpha-actinin. J Biol Chem. 2012, 287 (19): 15275-83. 10.1074/jbc.M112.351817.
PubMed Central
CAS
Google Scholar
Strack S, et al: Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180. J Biol Chem. 2000, 275 (33): 25061-4. 10.1074/jbc.C000319200.
CAS
Google Scholar
Carlisle HJ, et al: Deletion of densin-180 results in abnormal behaviors associated with mental illness and reduces mGluR5 and DISC1 in the postsynaptic density fraction. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2011, 31 (45): 16194-207. 10.1523/JNEUROSCI.5877-10.2011.
CAS
Google Scholar
Loweth JA, et al: Persistent Reversal of Enhanced Amphetamine Intake by Transient CaMKII Inhibition. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2013, 33 (4): 1411-6. 10.1523/JNEUROSCI.4386-13.2013.
CAS
Google Scholar
Shen K, Meyer T: Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science. 1999, 284 (5411): 162-6. 10.1126/science.284.5411.162.
CAS
Google Scholar
Yamagata Y, et al: Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning. J Neurosci. 2009, 29 (23): 7607-7618. 10.1523/JNEUROSCI.0707-09.2009.
CAS
Google Scholar
O’Leary H, et al: Nucleotides and phosphorylation bi-directionally modulate Ca2+/calmodulin-dependent protein kinase II (CaMKII) binding to the N-methyl-D-aspartate (NMDA) receptor subunit GluN2B. J Biol Chem. 2011, 286 (36): 31272-81. 10.1074/jbc.M111.233668.
PubMed Central
Google Scholar
Wang H, et al: Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc Natl Acad Sci USA. 2003, 100 (7): 4287-92. 10.1073/pnas.0636870100.
PubMed Central
CAS
Google Scholar
Jiang X, et al: Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proc Natl Acad Sci USA. 2008, 105 (1): 341-346. 10.1073/pnas.0710213105.
PubMed Central
CAS
Google Scholar
Li Y, et al: Phosphorylated CaMKII post-synaptic binding to NR2B subunits in the anterior cingulate cortex mediates visceral pain in visceral hypersensitive rats. J Neurochem. 2012, 121 (4): 662-671. 10.1111/j.1471-4159.2012.07717.x.
CAS
Google Scholar
Sacktor T: Memory maintenance by PKMzeta – an evolutionary perspective. Mol Brain. 2012, 5 (1): 31-31. 10.1186/1756-6606-5-31.
PubMed Central
CAS
Google Scholar
Serrano P, Yao Y, Sacktor T: Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation. J Neurosci. 2005, 25 (8): 1979-1984. 10.1523/JNEUROSCI.5132-04.2005.
CAS
Google Scholar
Pastalkova E, et al: Storage of spatial information by the maintenance mechanism of LTP. Science. 2006, 313 (5790): 1141-4. 10.1126/science.1128657.
CAS
Google Scholar
Wu-Zhang A, et al: Cellular pharmacology of protein kinase Mζ (PKMζ) contrasts with its in vitro profile: implications for PKMζ as a mediator of memory. J Biol Chem. 2012, 287 (16): 12879-12885. 10.1074/jbc.M112.357244.
PubMed Central
CAS
Google Scholar
Lisman J: Memory erasure by very high concentrations of ZIP may not be due to PKM-zeta. Hippocampus. 2012, 22 (3): 648-649. 10.1002/hipo.20980.
CAS
Google Scholar
Yao Y, et al: Matching biochemical and functional efficacies confirm ZIP as a potent competitive inhibitor of PKMζ in neurons. Neuropharmacology. 2013, 64: 37-44.
PubMed Central
CAS
Google Scholar
Volk LJ, et al: PKM-zeta is not required for hippocampal synaptic plasticity, learning and memory. Nature. 2013, 493 (7432): 420-3. 10.1038/nature11802.
CAS
Google Scholar
Tsokas P, et al Conditional knockout of the PKC/PKMζ gene in the adult mouse hippocampus prevents L-LTP. in 2012 Society for Neuroscience Meeting: : New Orleans. 2012, SfN: LA
Google Scholar
Petersen JD, et al: Distribution of Postsynaptic Density (PSD)-95 and Ca2+/Calmodulin-Dependent Protein Kinase II at the PSD. J Neurosci. 2003, 23 (35): 11270-11278.
CAS
Google Scholar
Hamilton AM, et al: Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron. 2012, 74 (6): 1023-30. 10.1016/j.neuron.2012.04.031.
PubMed Central
CAS
Google Scholar