Kerchner GA, Nicoll RA: Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci. 2008, 9: 813-825.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kessels HW, Malinow R: Synaptic AMPA receptor plasticity and behavior. Neuron. 2009, 61: 340-350.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lüscher C, Malenka RC: NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012, 4: DOI: 10.1101/cshperspect.a005710..
Google Scholar
Bliss TV, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993, 361: 31-39.
Article
CAS
PubMed
Google Scholar
Bliss T, Collingridge G, Morris R: Synaptic plasticity in the hippocampus. The Hippocampus Book. Edited by: Andersen P, Morris R, Amaral D, Bliss T, O'Keefe J. New York: Oxford University Press, 343-474.
Dolphin AC, Errington ML, Bliss TV: Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature. 1982, 297: 496-498.
Article
CAS
PubMed
Google Scholar
Errington ML, Lynch MA, Bliss TV: Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(−)aminophosphonovalerate. Neuroscience. 1987, 20: 279-284.
Article
CAS
PubMed
Google Scholar
Aniksztejn L, Roisin MP, Amsellem R, Ben-Ari Y: Long-term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids. Neuroscience. 1989, 28: 387-392.
Article
CAS
PubMed
Google Scholar
Bliss TV, Errington ML, Laroche S, Lynch MA: Increase in K+−stimulated, Ca2+−dependent release of [3H] glutamate from rat dentate gyrus three days after induction of long-term potentiation. Neurosci Lett. 1987, 83: 107-112.
Article
CAS
PubMed
Google Scholar
Errington ML, Galley PT, Bliss TVP: Long-term potentiation in the dentate gyrus of the anaesthetized rat is accompanied by an increase in extracellular glutamate: real-time measurements using a novel dialysis electrode. Philos Trans R Soc Lond B Biol Sci. 2003, 358: 675-687.
Article
PubMed Central
CAS
PubMed
Google Scholar
McNaughton BL: Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J Physiol. 1982, 324: 249-262.
Article
PubMed Central
CAS
PubMed
Google Scholar
Palmer MJ, Isaac JTR, Collingridge GL: Multiple, developmentally regulated expression mechanisms of long-term potentiation at CA1 synapses. J Neurosci. 2004, 24: 4903-4911.
Article
CAS
PubMed
Google Scholar
Malgaroli A, Ting AE, Wendland B, Bergamaschi A, Villa A, Tsien RW, Scheller RH: Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science. 1995, 268: 1624-1628.
Article
CAS
PubMed
Google Scholar
Betz WJ, Bewick GS: Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science. 1992, 255: 200-203.
Article
CAS
PubMed
Google Scholar
Ryan TA, Ziv NE, Smith SJ: Potentiation of evoked vesicle turnover at individually resolved synaptic boutons. Neuron. 1996, 17: 125-134.
Article
CAS
PubMed
Google Scholar
Zakharenko SS, Zablow L, Siegelbaum SA: Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci. 2001, 4: 711-717.
Article
CAS
PubMed
Google Scholar
Stanton PK, Winterer J, Zhang X-L, Müller W: Imaging LTP of presynaptic release of FM1-43 from the rapidly recycling vesicle pool of Schaffer collateral-CA1 synapses in rat hippocampal slices. Eur J Neurosci. 2005, 22: 2451-2461.
Article
PubMed
Google Scholar
Ahmed MS, Siegelbaum SA: Recruitment of N-Type Ca2+ channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron. 2009, 63: 372-385.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bayazitov IT, Richardson RJ, Fricke RG, Zakharenko SS: Slow presynaptic and fast postsynaptic components of compound long-term potentiation. J Neurosci. 2007, 27: 11510-11521.
Article
CAS
PubMed
Google Scholar
Fatt P, Katz B: Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952, 117: 109-128.
PubMed Central
CAS
PubMed
Google Scholar
Stevens CF, Wang Y: Changes in reliability of synaptic function as a mechanism for plasticity. Nature. 1994, 371: 704-707.
Article
CAS
PubMed
Google Scholar
Kullmann DM: Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron. 1994, 12: 1111-1120.
Article
CAS
PubMed
Google Scholar
Kullmann DM, Erdemli G, Asztely F: LTP of AMPA and NMDA receptor-mediated signals: evidence for presynaptic expression and extrasynaptic glutamate spill-over. Neuron. 1996, 17: 461-474.
Article
CAS
PubMed
Google Scholar
Choi S, Klingauf J, Tsien RW: Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat Neurosci. 2000, 3: 330-336.
Article
CAS
PubMed
Google Scholar
Lauri SE, Palmer M, Segerstrale M, Vesikansa A, Taira T, Collingridge GL: Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology. 2007, 52: 1-11.
Article
CAS
PubMed
Google Scholar
Lauri SE, Vesikansa A, Segerstrale M, Collingridge GL, Isaac JTR, Taira T: Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release. Neuron. 2006, 50: 415-429.
Article
CAS
PubMed
Google Scholar
Alford S, Frenguelli BG, Schofield JG, Collingridge GL: Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol. 1993, 469: 693-716.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yuste R, Denk W: Dendritic spines as basic functional units of neuronal integration. Nature. 1995, 375: 682-684.
Article
CAS
PubMed
Google Scholar
Emptage NJ, Reid CA, Fine A, Bliss TVP: Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses. Neuron. 2003, 38: 797-804.
Article
CAS
PubMed
Google Scholar
Enoki R, Hu Y-L, Hamilton D, Fine A: Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron. 2009, 62: 242-253.
Article
CAS
PubMed
Google Scholar
McGuinness L, Taylor C, Taylor RDT, Yau C, Langenhan T, Hart ML, Christian H, Tynan PW, Donnelly P, Emptage NJ: Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron. 2010, 68: 1109-1127.
Article
CAS
PubMed
Google Scholar
Emptage N, Bliss TV, Fine A: Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron. 1999, 22: 115-124.
Article
CAS
PubMed
Google Scholar
Sayer RJ, Friedlander MJ, Redman SJ: The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J Neurosci. 1990, 10: 826-836.
CAS
PubMed
Google Scholar
Lisman JE: The pre/post LTP debate. Neuron. 2009, 63: 281-284.
Article
CAS
PubMed
Google Scholar
Palmer LM, Stuart GJ: Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci. 2009, 29: 6897-6903.
Article
CAS
PubMed
Google Scholar
Lee S-JR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R: Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 2009, 458: 299-304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Murakoshi H, Wang H, Yasuda R: Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature. 2011, 472: 100-104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kauer JA, Malenka RC, Nicoll RA: A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1988, 1: 911-917.
Article
CAS
PubMed
Google Scholar
Bashir ZI, Alford S, Davies SN, Randall AD, Collingridge GL: Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature. 1991, 349: 156-158.
Article
CAS
PubMed
Google Scholar
Clark KA, Collingridge GL: Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J Physiol. 1995, 482: 39-52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Berretta N, Berton F, Bianchi R, Brunelli M, Capogna M, Francesconi W: Long-term Potentiation of NMDA Receptor-mediated EPSP in Guinea-pig Hippocampal Slices. Eur J Neurosci. 1991, 3: 850-854.
Article
PubMed
Google Scholar
Muller D, Lynch G: Long-term potentiation differentially affects two components of synaptic responses in hippocampus. Proc Natl Acad Sci USA. 1988, 85: 9346-9350.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manabe T, Nicoll RA: Long-term potentiation: evidence against an increase in transmitter release probability in the CA1 region of the hippocampus. Science. 1994, 265: 1888-1892.
Article
CAS
PubMed
Google Scholar
Mainen ZF, Jia Z, Roder J, Malinow R: Use-dependent AMPA receptor block in mice lacking GluR2 suggests postsynaptic site for LTP expression. Nat Neurosci. 1998, 1: 579-586.
Article
CAS
PubMed
Google Scholar
Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J: Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron. 1996, 17: 945-956.
Article
CAS
PubMed
Google Scholar
Diamond JS, Bergles DE, Jahr CE: Glutamate release monitored with astrocyte transporter currents during LTP. Neuron. 1998, 21: 425-433.
Article
CAS
PubMed
Google Scholar
Lüscher C, Malenka RC, Nicoll RA: Monitoring glutamate release during LTP with glial transporter currents. Neuron. 1998, 21: 435-441.
Article
PubMed
Google Scholar
Kawamura Y, Manita S, Nakamura T, Inoue M, Kudo Y, Miyakawa H: Glutamate release increases during mossy-CA3 LTP but not during Schaffer-CA1 LTP. Eur J Neurosci. 2004, 19: 1591-1600.
Article
PubMed
Google Scholar
Pita-Almenar JD, Collado MS, Colbert CM, Eskin A: Different mechanisms exist for the plasticity of glutamate reuptake during early long-term potentiation (LTP) and late LTP. J Neurosci. 2006, 26: 10461-10471.
Article
CAS
PubMed
Google Scholar
Kullmann DM, Nicoll RA: Long-term potentiation is associated with increases in quantal content and quantal amplitude. Nature. 1992, 357: 240-244.
Article
CAS
PubMed
Google Scholar
Manabe T, Renner P, Nicoll RA: Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature. 1992, 355: 50-55.
Article
CAS
PubMed
Google Scholar
Oliet SH, Malenka RC, Nicoll RA: Bidirectional control of quantal size by synaptic activity in the hippocampus. Science. 1996, 271: 1294-1297.
Article
CAS
PubMed
Google Scholar
Liao D, Hessler NA, Malinow R: Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature. 1995, 375: 400-404.
Article
CAS
PubMed
Google Scholar
Isaac JT, Nicoll RA, Malenka RC: Evidence for silent synapses: implications for the expression of LTP. Neuron. 1995, 15: 427-434.
Article
CAS
PubMed
Google Scholar
Ward B, McGuinness L, Akerman CJ, Fine A, Bliss TVP, Emptage NJ: State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron. 2006, 52: 649-661.
Article
CAS
PubMed
Google Scholar
Durand GM, Kovalchuk Y, Konnerth A: Long-term potentiation and functional synapse induction in developing hippocampus. Nature. 1996, 381: 71-75.
Article
CAS
PubMed
Google Scholar
Lynch GS, Gribkoff VK, Deadwyler SA: Long term potentiation is accompanied by a reduction in dendritic responsiveness to glutamic acid. Nature. 1976, 263: 151-153.
Article
CAS
PubMed
Google Scholar
Davies SN, Lester RA, Reymann KG, Collingridge GL: Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation. Nature. 1989, 338: 500-503.
Article
CAS
PubMed
Google Scholar
Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H: Structural basis of long-term potentiation in single dendritic spines. Nature. 2004, 429: 761-766.
Article
PubMed Central
CAS
PubMed
Google Scholar
Frick A, Magee J, Johnston D: LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci. 2004, 7: 126-135.
Article
CAS
PubMed
Google Scholar
Benke TA, Lüthi A, Isaac JT, Collingridge GL: Modulation of AMPA receptor unitary conductance by synaptic activity. Nature. 1998, 393: 793-797.
Article
CAS
PubMed
Google Scholar
Jahr CE, Stevens CF: Glutamate activates multiple single channel conductances in hippocampal neurons. Nature. 1987, 325: 522-525.
Article
CAS
PubMed
Google Scholar
Cull-Candy SG, Usowicz MM: Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature. 1987, 325: 525-528.
Article
CAS
PubMed
Google Scholar
Soderling TR, Derkach VA: Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000, 23: 75-80.
Article
CAS
PubMed
Google Scholar
Rosenmund C, Stern-Bach Y, Stevens CF: The tetrameric structure of a glutamate receptor channel. Science. 1998, 280: 1596-1599.
Article
CAS
PubMed
Google Scholar
Derkach V, Barria A, Soderling TR: Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA. 1999, 96: 3269-3274.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC, Huganir R, Traynelis SF: Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci. 2011, 14: 727-735.
Article
PubMed Central
CAS
PubMed
Google Scholar
Richmond SA, Irving AJ, Molnar E, McIlhinney RA, Michelangeli F, Henley JM, Collingridge GL: Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience. 1996, 75: 69-82.
Article
CAS
PubMed
Google Scholar
Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT: Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 2001, 29: 243-254.
Article
CAS
PubMed
Google Scholar
Pickard L, Noël J, Duckworth JK, Fitzjohn SM, Henley JM, Collingridge GL, Molnar E: Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology. 2001, 41: 700-713.
Article
CAS
PubMed
Google Scholar
Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D: CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron. 2010, 67: 239-252.
Article
CAS
PubMed
Google Scholar
Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R: Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science. 1999, 284: 1811-1816.
Article
CAS
PubMed
Google Scholar
Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R: Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science. 2000, 287: 2262-2267.
Article
CAS
PubMed
Google Scholar
Ashby MC, La Rue De SA, Ralph GS, Uney J, Collingridge GL, Henley JM: Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci. 2004, 24: 5172-5176.
Article
PubMed Central
CAS
PubMed
Google Scholar
Makino H, Malinow R: AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron. 2009, 64: 381-390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Patterson MA, Szatmari EM, Yasuda R: AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc Natl Acad Sci USA. 2010, 107: 15951-15956.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pickard L, Noël J, Henley JM, Collingridge GL, Molnar E: Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci. 2000, 20: 7922-7931.
CAS
PubMed
Google Scholar
Liu SQ, Cull-Candy SG: Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature. 2000, 405: 454-458.
Article
CAS
PubMed
Google Scholar
Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ, Collingridge GL, Isaac JTR: Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci. 2006, 9: 602-604.
Article
CAS
PubMed
Google Scholar
Appleby VJ, Corrêa SAL, Duckworth JK, Nash JE, Noël J, Fitzjohn SM, Collingridge GL, Molnar E: LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. J Neurochem. 2011, 116: 530-543.
Article
CAS
PubMed
Google Scholar
Adesnik H, Nicoll RA: Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J Neurosci. 2007, 27: 4598-4602.
Article
CAS
PubMed
Google Scholar
Nishimune A, Isaac JT, Molnar E, Noël J, Nash SR, Tagaya M, Collingridge GL, Nakanishi S, Henley JM: NSF binding to GluR2 regulates synaptic transmission. Neuron. 1998, 21: 87-97.
Article
CAS
PubMed
Google Scholar
Yao Y, Kelly MT, Sajikumar S, Serrano P, Tian D, Bergold PJ, Frey JU, Sacktor TC: PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci. 2008, 28: 7820-7827.
Article
PubMed Central
CAS
PubMed
Google Scholar
Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC, Wang YT, Nader K: PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci. 2010, 13: 630-634.
Article
CAS
PubMed
Google Scholar
Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC: Storage of spatial information by the maintenance mechanism of LTP. Science. 2006, 313: 1141-1144.
Article
CAS
PubMed
Google Scholar
Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll RA: LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature. 2012, 10.1038/nature11775.
Google Scholar
Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL: PKM-Ζ is not required for hippocampal synaptic plasticity, learning and memory. Nature. 2012, 493: 420-423.
Article
Google Scholar
Lee AM, Kanter BR, Wang D, Lim JP, Zou ME, Qiu C, McMahon T, Dadgar J, Fischbach-Weiss SC, Messing RO: Prkcz null mice show normal learning and memory. Nature. 2012, 493: 416-419.
Article
Google Scholar
Harris KM, Fiala JC, Ostroff L: Structural changes at dendritic spine synapses during long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 2003, 358: 745-748.
Article
PubMed Central
PubMed
Google Scholar
Tanaka J-I, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H: Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science. 2008, 319: 1683-1687.
Article
PubMed Central
CAS
PubMed
Google Scholar
Engert F, Bonhoeffer T: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999, 399: 66-70.
Article
CAS
PubMed
Google Scholar
Volianskis A, Jensen M: Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus. J Physiol London. 2003, 550: 459-492.
Article
PubMed Central
CAS
PubMed
Google Scholar
Volianskis A, Bannister N, Collett VJ, Irvine MW, Monaghan DT, Fitzjohn SM, Jensen MS, Jane DE, Collingridge GL: Different NMDAR subtypes mediate induction of LTP and two forms of STP at CA1 synapses in the rat hippocampus in vitro. J Physiol London. 2013, in press
Google Scholar
Rumpel S, LeDoux J, Zador A, Malinow R: Postsynaptic receptor trafficking underlying a form of associative learning. Science. 2005, 308: 83-88.
Article
CAS
PubMed
Google Scholar