van Os J, Kapur S. Schizophrenia. Lancet. 2009;374:635–45.
Article
PubMed
CAS
Google Scholar
Association AP. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition: DSM-IV-TR®. American Psychiatric Association. 2000.
Google Scholar
Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry. 1996;153:321–30.
Article
CAS
PubMed
Google Scholar
Bobes J, Garcia-Portilla MP, Bascaran MT, Saiz PA, Bouzoño M. Quality of life in schizophrenic patients. Dialogues Clin Neurosci. 2007;9:215–26.
PubMed
PubMed Central
Google Scholar
McEvoy JP. The costs of schizophrenia. J Clin Psychiatry. 2007;68 Suppl 14:4–7.
PubMed
Google Scholar
Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RSE, Davis SM, Davis CE, Lebowitz BD, et al. Effectiveness of Antipsychotic Drugs in Patients with Chronic Schizophrenia. N Engl J Med. 2005;353:1209–23.
Article
CAS
PubMed
Google Scholar
Meltzer HY. Update on Typical and Atypical Antipsychotic Drugs. Annu Rev Med. 2013;64:393–406.
Article
CAS
PubMed
Google Scholar
Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114:169–79.
Article
PubMed
Google Scholar
Coyle JT. Glutamate and Schizophrenia: Beyond the Dopamine Hypothesis. Cell Mol Neurobiol. 2006;26:363–82.
Article
CAS
Google Scholar
Moghaddam B, Javitt D. From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and its Implication for Treatment. Neuropsychopharmacology. 2012;37:4–15.
Article
CAS
PubMed
Google Scholar
Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol. 1983;79:565–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
EF D, ED L. Abnormal mental states induced by phencyclidine as a model of schizophrenia. In: Domino E, editor. Phencyclidine: Historical and Current Perspectives. Ann Arbor: NPP Books; 1981. p. 401–18.
Google Scholar
Cosgrove J, Newell TG. Recovery of neuropsychological functions during reduction in use of phencyclidine. J Clin Psychol. 1991;47:159–69.
Article
CAS
PubMed
Google Scholar
Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148:1301–8.
Article
CAS
PubMed
Google Scholar
Krystal JH, Karper LP, Seibyl JP, et al. Subanesthetic effects of the noncompetitive nmda antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.
Article
CAS
PubMed
Google Scholar
Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA. Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington’s Disease. Neuron. 2002;33:849–60.
Article
CAS
PubMed
Google Scholar
Monaghan DT, Irvine MW, Costa BM, Fang G, Jane DE. Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int. 2012;61:581–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puddifoot C, Martel M-A, Soriano FX, Camacho A, Vidal-Puig A, Wyllie DJA, Hardingham GE. PGC-1α negatively regulates extrasynaptic NMDAR activity and excitotoxicity. J Neurosci. 2012;32:6995–7000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, Lee H, Craig AM, Cynader M, Raymond LA. Opposing Roles of Synaptic and Extrasynaptic NMDA Receptor Signaling in Cocultured Striatal and Cortical Neurons. J Neurosci. 2012;32:3992–4003.
Article
CAS
PubMed
Google Scholar
Hackos DH, Lupardus PJ, Grand T, Chen Y, Wang T-M, Reynen P, Gustafson A, Wallweber HJA, Volgraf M, Sellers BD. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron. 2016;89(5):983–99.
Article
CAS
PubMed
Google Scholar
Iwata Y, Nakajima S, Suzuki T, Keefe RSE, Plitman E, Chung JK, Caravaggio F, Mimura M, Graff-Guerrero A, Uchida H. Effects of glutamate positive modulators on cognitive deficits in schizophrenia: a systematic review and meta-analysis of double-blind randomized controlled trials. Mol Psychiatry. 2015;20:1151–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niswender CM, Conn PJ. Metabotropic Glutamate Receptors: Physiology, Pharmacology, and Disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, et al. Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator. Science. 2014;344:58–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemstapat K, Costa HD, Nong Y, Brady AE, Luo Q, Niswender CM, Tamagnan GD, Conn PJ. A Novel Family of Potent Negative Allosteric Modulators of Group II Metabotropic Glutamate Receptors. J Pharmacol Exp Ther. 2007;322:254–64.
Article
CAS
PubMed
Google Scholar
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, et al. Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem. 2015;58:6653–64.
Article
CAS
PubMed
Google Scholar
Houamed K, Kuijper J, Gilbert T, Haldeman B, O’Hara P, Mulvihill E, Almers W, Hagen F. Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science. 1991;252:1318–21.
Article
CAS
PubMed
Google Scholar
Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S. Sequence and expression of a metabotropic glutamate receptor. Nature. 1991;349:760–5.
Article
CAS
PubMed
Google Scholar
Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem. 1992;267:13361–8.
CAS
PubMed
Google Scholar
Aniksztejn L, Bregestovski P, Ben-Ari Y. Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur J Pharmacol. 1991;205:327–8.
Article
CAS
PubMed
Google Scholar
Harvey J, Collingridge GL. Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S, 3R‐ACPD in rat hippocampal slices. Br J Pharmacol. 1993;109:1085–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu SP, Sensi SL, Canzoniero LM, Buisson A, Choi DW. Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol. 1997;499:721–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitzjohn SM, Irving AJ, Palmer MJ, Harvey J, Lodge D, Collingridge GL. Activation of group I mGluRs potentiates NMDA responses in rat hippocampal slices. Neurosci Lett. 1996;203:211–3.
Article
CAS
PubMed
Google Scholar
Higley MJ. Localized GABAergic inhibition of dendritic Ca2+ signalling. Nat Rev Neurosci. 2014;15:567–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romano C, Van den Pol AN, O’Malley KL. Enhanced early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: Protein, mRNA splice variants, and regional distribution. J Comp Neurol. 1996;367:403–12.
Article
CAS
PubMed
Google Scholar
Lum JS, Fernandez F, Matosin N, Andrews JL, Huang X-F, Ooi L, Newell KA. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Sci Rep. 2016;6:34391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frank RAW, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MDR, Komiyama NH, Bradley SJ, Challiss JRA, Armstrong DJ, et al. Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder. PLoS One. 2011;6(4):e19011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayoub M, Angelicheva D, Vile D, Chandler D, Morar B, Cavanaugh JA, Visscher PM, Jablensky A, Pfleger KDG, Kalaydjieva L. Deleterious GRM1 Mutations in Schizophrenia. PLoS One. 2012;7(3):e32849.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volk DW, Eggan SM, Lewis DA. Alterations in metabotropic glutamate receptor 1 and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry. 2010;167(12):1489–98.
Article
PubMed
PubMed Central
Google Scholar
Brody SA, Conquet F, Geyer MA. Disruption of prepulse inhibition in mice lacking mGluR1. Eur J Neurosci. 2003;18(12):3361–6.
Article
CAS
PubMed
Google Scholar
Javanbakht A. Sensory gating deficits, pattern completion, and disturbed fronto-limbic balance, a model for description of hallucinations and delusions in schizophrenia. Med Hypotheses. 2006;67:1173–84.
Article
PubMed
Google Scholar
Cho HP, Garcia-Barrantes PM, Brogan JT, Hopkins CR, Niswender CM, Rodriguez AL, Venable DF, Morrison RD, Bubser M, Daniels SJ, et al. Chemical Modulation of Mutant mGlu1 Receptors Derived from Deleterious GRM1 Mutations Found in Schizophrenics. ACS Chem Biol. 2014;9:2334–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148:1474–86.
Article
CAS
PubMed
Google Scholar
Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry. 1999;46:56–72.
Article
CAS
PubMed
Google Scholar
Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci. 2000;97:8104–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howes OD, Montgomery AJ, Asselin M, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66:13–20.
Article
PubMed
Google Scholar
Verma A, Moghaddam B. Regulation of striatal dopamine release by metabotropic glutamate receptors. Synapse. 1998;28:220–6.
Article
CAS
PubMed
Google Scholar
Campusano JM, Abarca J, Forray MI, Gysling K, Bustos G. Modulation of dendritic release of dopamine by metabotropic glutamate receptors in rat substantia nigra. Biochem Pharmacol. 2002;63:1343–52.
Article
CAS
PubMed
Google Scholar
Chaki S, Yoshikawa R, Okuyama S. Group II metabotropic glutamate receptor-mediated regulation of dopamine release from slices of rat nucleus accumbens. Neurosci Lett. 2006;404:182–6.
Article
CAS
PubMed
Google Scholar
Zhang H, Sulzer D. Glutamate Spillover in the Striatum Depresses Dopaminergic Transmission by Activating Group I Metabotropic Glutamate Receptors. J Neurosci. 2003;23:10585–92.
CAS
PubMed
Google Scholar
Knoflach F, Mutel V, Jolidon S, Kew JNC, Malherbe P, Vieira E, Wichmann J, Kemp JA. Positive allosteric modulators of metabotropic glutamate 1 receptor: Characterization, mechanism of action, and binding site. Proc Natl Acad Sci. 2001;98:13402–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vieira E, Huwyler J, Jolidon S, Knoflach F, Mutel V, Wichmann J. 9H-Xanthene-9-carboxylic acid [1,2,4]oxadiazol-3-yl- and (2H-tetrazol-5-yl)-amides as potent, orally available mGlu1 receptor enhancers. Bioorg Med Chem Lett. 2005;15:4628–31.
Article
CAS
PubMed
Google Scholar
Garcia-Barrantes PM, Cho HP, Blobaum AL, Niswender CM, Conn JP, Lindsley CW. Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 1: SAR of modifications to the central aryl core. Bioorg Med Chem Lett. 2015;25:5107–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Barrantes PM, Cho HP, Blobaum AL, Niswender CM, Conn JP, Lindsley CW. Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 3. Engineering plasma stability by discovery and optimization of isoindolinone analogs. Bioorg Med Chem Lett. 2016;26:1869–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Barrantes PM, Cho HP, Metts AM, Blobaum AL, Niswender CM, Conn JP, Lindsley CW. Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 2: SAR of alternative 3-methyl heterocycles and progress towards an in vivo tool. Bioorg Med Chem Lett. 2016;26:751–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Barrantes PM, Cho HP, Starr TM, Blobaum AL, Niswender CM, Conn JP, Lindsley CW. Re-exploration of the mGlu1 PAM Ro 07–11401 scaffold: Discovery of analogs with improved CNS penetration despite steep SAR. Bioorg Med Chem Lett. 2016;26:2289–92.
Article
CAS
PubMed
Google Scholar
Satow A, Maehara S, Ise S, Hikichi H, Fukushima M, Suzuki G, Kimura T, Tanaka T, Ito S, Kawamoto H, Ohta H. Pharmacological Effects of the Metabotropic Glutamate Receptor 1 Antagonist Compared with Those of the Metabotropic Glutamate Receptor 5 Antagonist and Metabotropic Glutamate Receptor 2/3 Agonist in Rodents: Detailed Investigations with a Selective Allosteric Metabotropic Glutamate Receptor 1 Antagonist, FTIDC [4-[1-(2-Fluoropyridine-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide]. J Pharmacol Exp Ther. 2008;326:577–86.
Article
CAS
PubMed
Google Scholar
Satow A, Suzuki G, Maehara S, Hikichi H, Murai T, Murai T, Kawagoe-Takaki H, Hata M, Ito S, Ozaki S, et al. Unique Antipsychotic Activities of the Selective Metabotropic Glutamate Receptor 1 Allosteric Antagonist 2-Cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one. J Pharmacol Exp Ther. 2009;330:179–90.
Article
CAS
PubMed
Google Scholar
Ohta H, Kawamoto H, Suzuki G. mGluR1 Negative Allosteric Modulators: An Alternative Metabotropic Approach for the Treatment of Schizophrenia. Springer. 2010.
Google Scholar
Conn PJ, Lindsley CW, Jones CK. Activation of metabotropic glutamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci. 2009;30:25–31.
Article
CAS
PubMed
Google Scholar
Jia Z, Janus C, Henderson JT, Gerlai R. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci. 1997;17:5196–205.
PubMed
Google Scholar
Manahan-Vaughan D, Braunewell K-H. The Metabotropic Glutamate Receptor, mGluR5, is a Key Determinant of Good and Bad Spatial Learning Performance and Hippocampal Synaptic Plasticity. Cereb Cortex. 2005;15:1703–13.
Article
PubMed
Google Scholar
Brody SA, Dulawa SC, Conquet F, Geyer MA. Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Mol Psychiatry. 2004;9(1):35–41.
Article
CAS
PubMed
Google Scholar
Campbell UC, Lalwani K, Hernandez L, Kinney GG, Conn JP, Bristow LJ. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats. Psychopharmacology. 2004;175:310–8.
Article
CAS
PubMed
Google Scholar
Hu G, Duffy P, Swanson C, Ghasemzadeh MB, Kalivas PW. The Regulation of Dopamine Transmission by Metabotropic Glutamate Receptors. J Pharmacol Exp Ther. 1999;289:412–6.
CAS
PubMed
Google Scholar
Battaglia G, Fornai F, Busceti CL, Aloisi G, Cerrito F, De Blasi A, Melchiorri D, Nicoletti F. Selective Blockade of mGlu5 Metabotropic Glutamate Receptors Is Protective against Methamphetamine Neurotoxicity. J Neurosci. 2002;22:2135–41.
CAS
PubMed
Google Scholar
Walker AG, Conn PJ. Group I and group II metabotropic glutamate receptor allosteric modulators as novel potential antipsychotics. Curr Opin Pharmacol. 2015;0:40–5.
Article
CAS
Google Scholar
O’Brien JA, Lemaire W, Chen TB, Chang RS, Jacobson MA, Ha SN, Lindsley CW, Schaffhauser HJ, Sur C, Pettibone DJ, et al. A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol Pharmacol. 2003;64:731–40.
Article
PubMed
Google Scholar
O’Brien JA, Lemaire W, Wittmann M, Jacobson MA, Ha SN, Wisnoski DD, Lindsley CW, Schaffhauser HJ, Rowe B, Sur C, et al. A Novel Selective Allosteric Modulator Potentiates the Activity of Native Metabotropic Glutamate Receptor Subtype 5 in Rat Forebrain. J Pharmacol Exp Ther. 2004;309:568–77.
Article
PubMed
CAS
Google Scholar
Lindsley CW, Wisnoski DD, Leister WH, O’Brien JA, Lemaire W, Williams DL, Burno M, Sur C, Kinney GG, Pettibone DJ, et al. Discovery of Positive Allosteric Modulators for the Metabotropic Glutamate Receptor Subtype 5 from a Series of N-(1,3-Diphenyl-1H- pyrazol-5-yl)benzamides That Potentiate Receptor Function in Vivo. J Med Chem. 2004;47:5825–8.
Article
CAS
PubMed
Google Scholar
Kinney GG, O’Brien JA, Lemaire W, Burno M, Bickel DJ, Clements MK, Chen T-B, Wisnoski DD, Lindsley CW, Tiller PR, et al. A Novel Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Has in Vivo Activity and Antipsychotic-Like Effects in Rat Behavioral Models. J Pharmacol Exp Ther. 2005;313:199–206.
Article
CAS
PubMed
Google Scholar
Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ. Metabotropic Glutamate Subtype 5 Receptors Modulate Locomotor Activity and Sensorimotor Gating in Rodents. J Pharmacol Exp Ther. 2003;306:116–23.
Article
CAS
PubMed
Google Scholar
Ayala JE, Chen Y, Banko JL, Sheffler DJ, Williams R, Telk AN, Watson NL, Xiang Z, Zhang Y, Jones PJ, et al. mGluR5 Positive Allosteric Modulators Facilitate both Hippocampal LTP and LTD and Enhance Spatial Learning. Neuropsychopharmacology. 2009;34:2057–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez AL, Grier MD, Jones CK, Herman EJ. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral. Mol Pharmacol. 2010;78(6):1105–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gastambide F, Cotel M-C, Gilmour G, O’Neill MJ, Robbins TW, Tricklebank MD. Selective Remediation of Reversal Learning Deficits in the Neurodevelopmental MAM Model of Schizophrenia by a Novel mGlu5 Positive Allosteric Modulator. Neuropsychopharmacology. 2011;37:1057–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noetzel MJ, Rook JM, Vinson PN, Cho HP, Days E, Zhou Y, Rodriguez AL, Lavreysen H, Stauffer SR, Niswender CM. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol Pharmacol. 2012;81:120–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parmentier-Batteur S, Hutson PH, Menzel K, Uslaner JM, Mattson BA, O’Brien JA, Magliaro BC, Forest T, Stump CA, Tynebor RM, et al. Mechanism based neurotoxicity of mGlu5 positive allosteric modulators - Development challenges for a promising novel antipsychotic target. Neuropharmacology. 2014;82:161–73.
Article
CAS
PubMed
Google Scholar
Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE. (RS)-2-Chloro-5-Hydroxyphenylglycine (CHPG) Activates mGlu5, but not mGlu1, Receptors Expressed in CHO Cells and Potentiates NMDA Responses in the Hippocampus. Neuropharmacology. 1997;36:265–7.
Article
CAS
PubMed
Google Scholar
Doherty AJ, Palmer MJ, Bortolotto ZA, Hargreaves A, Kingston AE, Ornstein PL, Schoepp DD, Lodge D, Collingridge GL. A novel, competitive mGlu5 receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br J Pharmacol. 2000;131:239–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mannaioni G, Marino MJ, Valenti O. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci. 2001;21(16):5925–34.
CAS
PubMed
Google Scholar
Rook JM, Noetzel MJ, Pouliot WA, Bridges TM, Vinson PN, Cho HP, Zhou Y, Gogliotti RD, Manka JT, Gregory KJ, et al. Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol Psychiatry. 2013;73:501–9.
Article
CAS
PubMed
Google Scholar
Rook JM, Xiang Z, Lv X, Ghoshal A, Dickerson JW, Bridges TM, Johnson KA, Foster DJ, Gregory KJ, Vinson PN, et al. Biased mGlu5-Positive Allosteric Modulators Provide In Vivo Efficacy without Potentiating mGlu5 Modulation of NMDAR Currents. Neuron. 2015;86:1029–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balu DT, Li Y, Takagi S, Presti KT, Ramikie TS, Rook JM, Jones CK, Lindsley CW, Conn PJ, Bolshakov VY, Coyle JT. An mGlu5-Positive Allosteric Modulator Rescues the Neuroplasticity Deficits in a Genetic Model of NMDA Receptor Hypofunction in Schizophrenia. Neuropsychopharmacology. 2016;41(8):2052–61.
Article
CAS
PubMed
Google Scholar
Balu DT, Coyle JT. Neuronal d-serine regulates dendritic architecture in the somatosensory cortex. Neurosci Lett. 2012;517:77–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puhl MD, Berg AR, Bechtholt AJ, Coyle JT. Availability of N-Methyl-d-Aspartate Receptor Coagonists Affects Cocaine-Induced Conditioned Place Preference and Locomotor Sensitization: Implications for Comorbid Schizophrenia and Substance Abuse. J Pharmacol Exp Ther. 2015;353:465–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chevaleyre V, Castillo PE. Heterosynaptic LTD of Hippocampal GABAergic Synapses: A Novel Role of Endocannabinoids in Regulating Excitability. Neuron. 2003;38:461–72.
Article
CAS
PubMed
Google Scholar
Fontanez-Nuin DE, Santini E, Quirk GJ, Porter JT. Memory for Fear Extinction Requires mGluR5-Mediated Activation of Infralimbic Neurons. Cereb Cortex. 2011;21:727–35.
Article
PubMed
Google Scholar
Kiritoshi T, Sun H, Ren W, Stauffer SR, Lindsley CW, Conn PJ, Neugebauer V. Modulation of pyramidal cell output in the medial prefrontal cortex by mGluR5 interacting with CB1. Neuropharmacology. 2013;66:170–8.
Article
CAS
PubMed
Google Scholar
Marek GJ, Zhang C. Activation of metabotropic glutamate 5 (mGlu5) receptors induces spontaneous excitatory synaptic currents in layer V pyramidal cells of the rat prefrontal cortex. Neurosci Lett. 2008;442:239–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huber KM, Kayser MS, Bear MF. Role for Rapid Dendritic Protein Synthesis in Hippocampal mGluR-Dependent Long-Term Depression. Science. 2000;288:1254–6.
Article
CAS
PubMed
Google Scholar
Huber KM, Roder JC, Bear MF. Chemical Induction of mGluR5- and Protein Synthesis-Dependent Long-Term Depression in Hippocampal Area CA1. J Neurophysiol. 2001;86:321–5.
CAS
PubMed
Google Scholar
Gallagher SM, Daly CA, Bear MF, Huber KM. Extracellular Signal-Regulated Protein Kinase Activation Is Required for Metabotropic Glutamate Receptor-Dependent Long-Term Depression in Hippocampal Area CA1. J Neurosci. 2004;24:4859–64.
Article
CAS
PubMed
Google Scholar
Lynch MA. Long-Term Potentiation and Memory. Physiol Res. 2004;84:87–136.
CAS
Google Scholar
Rosenbrock H, Kramer G, Hobson S, Koros E, Grundl M, Grauert M, Reymann KG, Schröder UH. Functional interaction of metabotropic glutamate receptor 5 and NMDA-receptor by a metabotropic glutamate receptor 5 positive allosteric modulator. Eur J Pharmacol. 2010;639:40–6.
Article
CAS
PubMed
Google Scholar
Balu DT, Li Y, Puhl MD, Benneyworth MA, Basu AC, Takagi S, Bolshakov VY, Coyle JT. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci. 2013;110:E2400–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benquet P, Gee CE, Gerber U. Two Distinct Signaling Pathways Upregulate NMDA Receptor Responses via Two Distinct Metabotropic Glutamate Receptor Subtypes. J Neurosci. 2002;22:9679–86.
CAS
PubMed
Google Scholar
Kotecha SA, Jackson MF, Al-Mahrouki A, Roder JC, Orser BA, MacDonald JF. Co-stimulation of mGluR5 and N-Methyl-D-aspartate Receptors Is Required for Potentiation of Excitatory Synaptic Transmission in Hippocampal Neurons. J Biol Chem. 2003;278:27742–9.
Article
CAS
PubMed
Google Scholar
Collett VJ, Collingridge GL. Interactions between NMDA receptors and mGlu5 receptors expressed in HEK293 cells. Br J Pharmacol. 2004;142:991–1001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin D-Z, Guo M-L, Xue B, Mao L-M, Wang JQ. Differential Regulation of CaMKIIα Interactions with mGluR5 and NMDA Receptors by Ca(2+) in Neurons. J Neurochem. 2013;127:620–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moutin E, Raynaud F, Roger J, Pellegrino E, Homburger V, Bertaso F, Ollendorff V, Bockaert J, Fagni L, Perroy J. Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. J Cell Biol. 2012;198:251–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J-H, Yang L, Kammermeier PJ, Moore CG, Brakeman PR, Tu J, Yu S, Petralia RS, Li Z, Zhang P-W, et al. Preso1 dynamically regulates group I metabotropic glutamate receptors. Nat Neurosci. 2012;15:836–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park Joo M, Hu J-H, Milshteyn A, Zhang P-W, Moore Chester G, Park S, Datko Michael C, Domingo Racquel D, Reyes Cindy M, Wang Xiaodong J, et al. A Prolyl-Isomerase Mediates Dopamine-Dependent Plasticity and Cocaine Motor Sensitization. Cell. 2013;154:637–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao C, Tronson NC, Radulovic J. Modulation of behavior by scaffolding proteins of the post-synaptic density. Neurobiol Learn Mem. 2013;105:3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. A family of metabotropic glutamate receptors. Neuron. 1992;8:169–79.
Article
CAS
PubMed
Google Scholar
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology. 2011;60:1017–41.
Article
CAS
PubMed
Google Scholar
Winder DG, Ritch PS, Gereau RW, Conn PJ. Novel glial-neuronal signalling by coactivation of metabotropic glutamate and beta-adrenergic receptors in rat hippocampus. J Physiol. 1996;494(Pt 3):743–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winder DG, Conn PJ. Roles of metabotropic glutamate receptors in glial function and glial-neuronal communication. J Neurosci Res. 1996;46:131–7.
Article
CAS
PubMed
Google Scholar
Johnson KA, Mateo Y, Lovinger DM. Metabotropic glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine release in the dorsal striatum. Neuropharmacology. 2017;117:114–23.
Article
CAS
PubMed
Google Scholar
Deakin JFW, Slater P, Simpson MDC, Gilchrist AC, Skan WJ, Royston MC, Reynolds GP, Cross AJ. Frontal Cortical and Left Temporal Glutamatergic Dysfunction in Schizophrenia. J Neurochem. 1989;52:1781–6.
Article
CAS
PubMed
Google Scholar
Liu J, Moghaddam B. Regulation of glutamate efflux by excitatory amino acid receptors: evidence for tonic inhibitory and phasic excitatory regulation. J Pharmacol Exp Ther. 1995;274:1209–15.
CAS
PubMed
Google Scholar
Homayoun H, Moghaddam B. NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons. J Neurosci. 2007;27:11496–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moghaddam B, Adams B, Verma A, Daly D. Activation of Glutamatergic Neurotransmission by Ketamine: A Novel Step in the Pathway from NMDA Receptor Blockade to Dopaminergic and Cognitive Disruptions Associated with the Prefrontal Cortex. J Neurosci. 1997;17:2921–7.
CAS
PubMed
Google Scholar
Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry. 1997;154:805–11.
Article
CAS
PubMed
Google Scholar
Vollenweider FX, Leenders KL, Øye I, Hell D, Angst J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol. 1997;7:25–38.
Article
CAS
PubMed
Google Scholar
Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA. Effects of ketamine and n-methyl-d-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience. 2003;117:697–706.
Article
CAS
PubMed
Google Scholar
Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology. 1999;38:1431–76.
Article
CAS
PubMed
Google Scholar
Trepanier C, Lei G, Xie Y-F, MacDonald JF. Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase. Sci Rep. 2013;3:926.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tyszkiewicz JP, Gu Z, Wang X, Cai X, Yan Z. Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex. J Physiol. 2004;554:765–77.
Article
CAS
PubMed
Google Scholar
Cheng J, Liu W, Duffney LJ, Yan Z. SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol. 2013;591:3935–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Maeso J, Ang R, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callado LF, Milligan G, et al. Identification of a Novel Serotonin/Glutamate Receptor Complex Implicated in Psychosis. Nature. 2008;452:93–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, et al. Decoding the Signaling of a GPCR Heteromeric Complex Reveals a Unifying Mechanism of Action of Antipsychotic Drugs. Cell. 2011;147:1011–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, Ben-Ezra A, Voloudakis G, Fakira AK, Baki L, et al. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal. 2016;9:ra5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport. 1998;9:3897–902.
Article
CAS
PubMed
Google Scholar
Aghajanian GK, Marek GJ. Serotonin Induces Excitatory Postsynaptic Potentials in Apical Dendrites of Neocortical Pyramidal Cells. Neuropharmacology. 1997;36:589–99.
Article
CAS
PubMed
Google Scholar
Marek GJ, Wright RA, Gewirtz JC, Schoepp DD. A major role for thalamocortical afferents in serotonergic hallucinogen receptor function in the rat neocortex. Neuroscience. 2001;105:379–92.
Article
CAS
PubMed
Google Scholar
Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK. Physiological Antagonism between 5-Hydroxytryptamine < sub > 2A</sub > and Group II Metabotropic Glutamate Receptors in Prefrontal Cortex. J Pharmacol Exp Ther. 2000;292:76–87.
CAS
PubMed
Google Scholar
Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL, Heshmati M, Golden SA, Kennedy PJ, Takahashi N, et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci. 2012;15:1245–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moghaddam B, Adams BW. Reversal of Phencyclidine Effects by a Group II Metabotropic Glutamate Receptor Agonist in Rats. Science. 1998;281:1349–52.
Article
CAS
PubMed
Google Scholar
Homayoun H, Jackson ME, Moghaddam B. Activation of Metabotropic Glutamate 2/3 Receptors Reverses the Effects of NMDA Receptor Hypofunction on Prefrontal Cortex Unit Activity in Awake Rats. J Neurophysiol. 2005;93:1989–2001.
Article
CAS
PubMed
Google Scholar
Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, Schoepp DD. In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. Psychopharmacology. 2007;193:121–36.
Article
CAS
PubMed
Google Scholar
Lowe S, Dean R, Ackermann B, Jackson K, Natanegara F, Anderson S, Eckstein J, Yuen E, Ayan-Oshodi M, Ho M, et al. Effects of a novel mGlu2/3 receptor agonist prodrug, LY2140023 monohydrate, on central monoamine turnover as determined in human and rat cerebrospinal fluid. Psychopharmacology. 2012;219:959–70.
Article
CAS
PubMed
Google Scholar
Mayada A, Pierri JN, Whitehead RE, Edgar CL, Carrie M, Sampson AR, Lewis DA. Lamina-Specific Alterations in the Dopamine Innervation of the Prefrontal Cortex in Schizophrenic Subjects. Am J Psychiatry. 1999;156:1580–9.
Article
Google Scholar
Goldman-Rakic PS, Muly IEC, Williams GV. D1 receptors in prefrontal cells and circuits. Brain Res Rev. 2000;31:295–301.
Article
CAS
PubMed
Google Scholar
Pietro NCD, Seamans JK. Dopamine and Serotonin Interactions in the Prefrontal Cortex: Insights on Antipsychotic Drugs and Their Mechanism of Action. Pharmacopsychiatry. 2007;40:S27–33.
Article
PubMed
CAS
Google Scholar
Sumiyoshi T, Kunugi H, Nakagome K. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front Neurosci. 2014;8:395.
Article
PubMed
PubMed Central
Google Scholar
Kinon BJ, Gómez J-C. Clinical development of pomaglumetad methionil: A non-dopaminergic treatment for schizophrenia. Neuropharmacology. 2013;66:82–6.
Article
CAS
PubMed
Google Scholar
Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med. 2007;13:1102–7.
Article
CAS
PubMed
Google Scholar
Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S, Jackson K, Kryzhanovskaya L, Jarkova N, Group HS. A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol. 2011;31:349–55.
Article
CAS
PubMed
Google Scholar
Adams DH, Kinon BJ, Baygani S, Millen BA, Velona I, Kollack-Walker S, Walling DP. A long-term, phase 2, multicenter, randomized, open-label, comparative safety study of pomaglumetad methionil (LY2140023 monohydrate) versus atypical antipsychotic standard of care in patients with schizophrenia. BMC Psychiatry. 2013;13:143.
Article
PubMed
PubMed Central
CAS
Google Scholar
Downing AM, Kinon BJ, Millen BA, Zhang L, Liu L, Morozova MA, Brenner R, Rayle TJ, Nisenbaum L, Zhao F, Gomez JC. A double-blind, placebo-controlled comparator study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry. 2014;14:351.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stauffer VL, Millen BA, Andersen S, Kinon BJ, LaGrandeur L, Lindenmayer JP, Gomez JC. Pomaglumetad methionil: No significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res. 2013;150:434–41.
Article
PubMed
Google Scholar
Galici R, Echemendia NG, Rodriguez AL, Conn PJ. A Selective Allosteric Potentiator of Metabotropic Glutamate (mGlu) 2 Receptors Has Effects Similar to an Orthosteric mGlu2/3 Receptor Agonist in Mouse Models Predictive of Antipsychotic Activity. J Pharmacol Exp Ther. 2005;315:1181–7.
Article
CAS
PubMed
Google Scholar
Aultman MJ, Moghaddam B. Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task. Psychopharmacology. 2001;153:353–64.
Article
CAS
PubMed
Google Scholar
Higgins GA, Ballard TM, Kew JNC, Grayson Richards J, Kemp JA, Adam G, Woltering T, Nakanishi S, Mutel V. Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology. 2004;46:907–17.
Article
CAS
PubMed
Google Scholar
Spooren WPJM, Gasparini F, van der Putten H, Koller M, Nakanishi S, Kuhn R. Lack of effect of LY314582 (a group 2 metabotropic glutamate receptor agonist) on phencyclidine-induced locomotor activity in metabotropic glutamate receptor 2 knockout mice. Eur J Pharmacol. 2000;397:R1–2.
Article
CAS
PubMed
Google Scholar
Fell MJ, Svensson KA, Johnson BG, Schoepp DD. Evidence for the Role of Metabotropic Glutamate (mGlu)2 Not mGlu3 Receptors in the Preclinical Antipsychotic Pharmacology of the mGlu2/3 Receptor Agonist (−)-(1R,4S,5S,6S)-4-Amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic Acid (LY404039). J Pharmacol Exp Ther. 2008;326:209–17.
Article
CAS
PubMed
Google Scholar
Johnson MP, Baez M, Jagdmann GE, Britton TC, Large TH, Callagaro DO, Tizzano JP, Monn JA, Schoepp DD. Discovery of Allosteric Potentiators for the Metabotropic Glutamate 2 Receptor: Synthesis and Subtype Selectivity of N-(4-(2-Methoxyphenoxy)phenyl)-N-(2,2,2− trifluoroethylsulfonyl)pyrid-3-ylmethylamine. J Med Chem. 2003;46:3189–92.
Article
CAS
PubMed
Google Scholar
Schaffhauser H, Rowe BA, Morales S, Chavez-Noriega LE, Yin R, Jachec C, Rao SP, Bain G, Pinkerton AB, Vernier J-M, et al. Pharmacological Characterization and Identification of Amino Acids Involved in the Positive Modulation of Metabotropic Glutamate Receptor Subtype 2. Mol Pharmacol. 2003;64:798–810.
Article
CAS
PubMed
Google Scholar
Bonnefous C, Vernier J-M, Hutchinson JH, Gardner MF, Cramer M, James JK, Rowe BA, Daggett LP, Schaffhauser H, Kamenecka TM. Biphenyl-indanones: Allosteric potentiators of the metabotropic glutamate subtype 2 receptor. Bioorg Med Chem Lett. 2005;15:4354–8.
Article
CAS
PubMed
Google Scholar
Galici R, Jones CK, Hemstapat K, Nong Y, Echemendia NG, Williams LC, de Paulis T, Conn PJ. Biphenyl-indanone A, a Positive Allosteric Modulator of the Metabotropic Glutamate Receptor Subtype 2, Has Antipsychotic- and Anxiolytic-Like Effects in Mice. J Pharmacol Exp Ther. 2006;318:173–85.
Article
CAS
PubMed
Google Scholar
Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, Sanders-Bush E. A Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 2 Blocks a Hallucinogenic Drug Model of Psychosis. Mol Pharmacol. 2007;72:477–84.
Article
CAS
PubMed
Google Scholar
Govek SP, Bonnefous C, Hutchinson JH, Kamenecka T, McQuiston J, Pracitto R, Zhao LX, Gardner MF, James JK, Daggett LP, et al. Benzazoles as allosteric potentiators of metabotropic glutamate receptor 2 (mGluR2): Efficacy in an animal model for schizophrenia. Bioorg Med Chem Lett. 2005;15:4068–72.
Article
CAS
PubMed
Google Scholar
Johnson MP, Barda D, Britton TC, Emkey R, Hornback WJ, Jagdmann GE, McKinzie DL, Nisenbaum ES, Tizzano JP, Schoepp DD. Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psychopharmacology. 2005;179:271–83.
Article
CAS
PubMed
Google Scholar
Duplantier AJ, Efremov I, Candler J, Doran AC, Ganong AH, Haas JA, Hanks AN, Kraus KG, Lazzaro Jr JT, Lu J, et al. 3-Benzyl-1,3-oxazolidin-2-ones as mGluR2 positive allosteric modulators: Hit-to lead and lead optimization. Bioorg Med Chem Lett. 2009;19:2524–9.
Article
CAS
PubMed
Google Scholar
Dhanya R-P, Sheffler DJ, Dahl R, Davis M, Lee PS, Yang L, Nickols HH, Cho HP, Smith LH, D’Souza MS, et al. Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and −3 (mGlu2/3) Receptor Positive Allosteric Modulators (PAMs): Pharmacological Characterization and Assessment in a Rat Model of Cocaine Dependence. J Med Chem. 2014;57:4154–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hiyoshi T, Marumo T, Hikichi H, Tomishima Y, Urabe H, Tamita T, Iida I, Yasuhara A, Karasawa J-I, Chaki S. Neurophysiologic and Antipsychotic Profiles of TASP0433864, a Novel Positive Allosteric Modulator of Metabotropic Glutamate 2 Receptor. J Pharmacol Exp Ther. 2014;351:642–53.
Article
PubMed
CAS
Google Scholar
Hikichi H, Hiyoshi T, Marumo T, Tomishima Y, Kaku A, Iida I, Urabe H, Tamita T, Yasuhara A, Karasawa J-I, Chaki S. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor. J Pharmacol Sci. 2015;127:352–61.
Article
CAS
PubMed
Google Scholar
Lavreysen H, Ahnaou A, Drinkenburg W, Langlois X, Mackie C, Pype S, Lütjens R, Le Poul E, Trabanco AA, Nuñez JMC. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor. Pharmacol Res Perspect. 2015;3:e00096.
Article
PubMed
CAS
Google Scholar
Lavreysen H, Langlois X, Donck LV, Nuñez JMC, Pype S, Lütjens R, Megens A. Preclinical evaluation of the antipsychotic potential of the mGlu2-positive allosteric modulator JNJ-40411813. Pharmacol Res Perspect. 2015;3:e00097.
Article
PubMed
PubMed Central
CAS
Google Scholar
Litman RE, Smith MA, Doherty JJ, Cross A, Raines S, Gertsik L, Zukin SR. AZD8529, a positive allosteric modulator at the mGluR2 receptor, does not improve symptoms in schizophrenia: A proof of principle study. Schizophr Res. 2016;172:152–7.
Article
PubMed
Google Scholar
Griebel G, Pichat P, Boulay D, Naimoli V, Potestio L, Featherstone R, Sahni S, Defex H, Desvignes C, Slowinski F, et al. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Sci Rep. 2016;6:35320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salih H, Anghelescu I, Kezic I, Sinha V, Hoeben E, Van Nueten L, De Smedt H, De Boer P. Pharmacokinetic and pharmacodynamic characterisation of JNJ-40411813, a positive allosteric modulator of mGluR2, in two randomised, double-blind phase-I studies. J Psychopharmacol. 2015;29:414–25.
Article
CAS
PubMed
Google Scholar
de la Fuente-Sandoval C, León-Ortiz P, Azcárraga M, Favila R, Stephano S, Graff-Guerrero A. Striatal glutamate and the conversion to psychosis: a prospective 1H-MRS imaging study. Int J Neuropsychopharmacol. 2013;16:471–5.
Article
PubMed
CAS
Google Scholar
de la Fuente-Sandoval C, León-Ortiz P, Azcárraga M, et al. Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: A longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry. 2013;70:1057–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, Mattay VS, Bertolino A, Hyde TM, Shannon-Weickert C, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A. 2004;101:12604–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Q, He G, Chen Q, Wu S, Xu Y, Feng G, Li Y, Wang L, He L. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophr Res. 2005;73:21–6.
Article
PubMed
Google Scholar
Harrison P, Lyon L, Sartorius L, Burnet P, Lane T. Review: The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol. 2008;22:308–22.
Article
CAS
PubMed
Google Scholar
Mössner R, Schuhmacher A, Schulze-Rauschenbach S, Kühn K-U, Rujescu D, Rietschel M, Zobel A, Franke P, Wölwer W, Gaebel W, et al. Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur Neuropsychopharmacol. 2008;18:768–72.
Article
PubMed
CAS
Google Scholar
Joo A, Shibata H, Ninomiya H, Kawasaki H, Tashiro N, Fukumaki Y. Structure and polymorphisms of the human metabotropic glutamate receptor type 2 gene (GRM2): analysis of association with schizophrenia. Mol Psychiatry. 2001;6:186–92.
Article
CAS
PubMed
Google Scholar
Tsunoka T, Kishi T, Kitajima T, Okochi T, Okumura T, Yamanouchi Y, Kinoshita Y, Kawashima K, Naitoh H, Inada T, et al. Association analysis of GRM2 and HTR2A with methamphetamine-induced psychosis and schizophrenia in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:639–44.
Article
CAS
PubMed
Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics C, Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B, Collier DA, et al. Biological Insights From 108 Schizophrenia-Associated Genetic Loci. Nature. 2014;511:421–7.
Article
CAS
Google Scholar
Dominguez C, Prieto L, Valli MJ, Massey SM, Bures M, Wright RA, Johnson BG, Andis SL, Kingston A, Schoepp DD, Monn JA. Methyl Substitution of 2-Aminobicyclo[3.1.0]hexane 2,6-Dicarboxylate (LY354740) Determines Functional Activity at Metabotropic Glutamate Receptors: Identification of a Subtype Selective mGlu2 Receptor Agonist. J Med Chem. 2005;48:3605–12.
Article
CAS
PubMed
Google Scholar
Li M-L, Yang S-S, Xing B, Ferguson BR, Gulchina Y, Li Y-C, Li F, Hu X-Q, Gao W-J. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker AG, Wenthur CJ, Xiang Z, Rook JM, Emmitte KA, Niswender CM, Lindsley CW, Conn PJ. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction. Proc Natl Acad Sci. 2015;112:1196–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruno V, Sureda FX, Storto M, Casabona G, Caruso A, Knopfel T, Kuhn R, Nicoletti F. The Neuroprotective Activity of Group-II Metabotropic Glutamate Receptors Requires New Protein Synthesis and Involves a Glial-Neuronal Signaling. J Neurosci. 1997;17:1891–7.
CAS
PubMed
Google Scholar
Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, Nicoletti F. Neuroprotection by Glial Metabotropic Glutamate Receptors Is Mediated by Transforming Growth Factor-β. J Neurosci Nurs. 1998;18:9594–600.
CAS
Google Scholar
Durand D, Carniglia L, Caruso C, Lasaga M. mGlu3 receptor and astrocytes: Partners in neuroprotection. Neuropharmacology. 2013;66:1–11.
Article
CAS
PubMed
Google Scholar
Bruno V, Caraci F, Copani A, Matrisciano F, Nicoletti F, Battaglia G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A “dark side” in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology. 2016;115:180–92.
Article
PubMed
CAS
Google Scholar
Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:115–21.
Article
CAS
Google Scholar
Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res. 2015;161:102–12.
Article
PubMed
Google Scholar
Di Menna L, Iacovelli L, Bruno V, Battaglia G, Nicoletti F. Functional cross-talk between group-I and group-II metabotropic glutamate receptors in heterologous expression systems and brain tissue. In Soc Neurosci Abs. 2015;2015:10.
Google Scholar
Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem. 1993;268:11868–73.
CAS
PubMed
Google Scholar
Saugstad JA, Kinzie JM, Mulvihill ER, Segerson TP, Westbrook GL. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Mol Pharmacol. 1994;45:367–72.
CAS
PubMed
Google Scholar
Saugstad JA, Kinzie JM, Shinohara MM, Segerson TP, Westbrook GL. Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol Pharmacol. 1997;51:119–25.
CAS
PubMed
Google Scholar
Cartmell J, Schoepp DD. Regulation of Neurotransmitter Release by Metabotropic Glutamate Receptors. J Neurochem. 2000;75:889–907.
Article
CAS
PubMed
Google Scholar
Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N. Differential Presynaptic Localization of Metabotropic Glutamate Receptor Subtypes in the Rat Hippocampus. J Neurosci. 1997;17:7503–22.
CAS
PubMed
Google Scholar
Corti C, Aldegheri L, Somogyi P, Ferraguti F. Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience. 2002;110:403–20.
Article
CAS
PubMed
Google Scholar
Ohishi H, Akazawa C, Shigemoto R, Nakanishi S, Mizuno N. Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol. 1995;360:555–70.
Article
CAS
PubMed
Google Scholar
Pekhletski R, Gerlai R, Overstreet LS, Huang X-P, Agopyan N, Slater NT, Abramow-Newerly W, Roder JC, Hampson DR. Impaired Cerebellar Synaptic Plasticity and Motor Performance in Mice Lacking the mGluR4 Subtype of Metabotropic Glutamate Receptor. J Neurosci. 1996;16:6364–73.
CAS
PubMed
Google Scholar
Gerlai R, Roder JC, Hampson DR. Altered spatial learning and memory in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. Behav Neurosci. 1998;112:525–32.
Article
CAS
PubMed
Google Scholar
Pałucha-Poniewiera A, Kłodzińska A, Stachowicz K, Tokarski K, Hess G, Schann S, Frauli M, Neuville P, Pilc A. Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology. 2008;55:517–24.
Article
PubMed
CAS
Google Scholar
Wierońska JM, Stachowicz K, Acher F, Lech T, Pilc A. Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia. Psychopharmacology. 2012;220:481–94.
Article
PubMed
CAS
Google Scholar
Wozniak M, Acher F, Marciniak M, Lason-Tyburkiewicz M, Gruca P, Papp M, Pilc A, Wieronska JM. Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022. Curr Neuropharmacol. 2016;14:413–26.
Article
PubMed
PubMed Central
Google Scholar
Bennouar K-E, Uberti MA, Melon C, Bacolod MD, Jimenez HN, Cajina M, Kerkerian-Le Goff L, Doller D, Gubellini P. Synergy between l-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: Implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology. 2013;66:158–69.
Article
CAS
PubMed
Google Scholar
East SP, Bamford S, Dietz MGA, Eickmeier C, Flegg A, Ferger B, Gemkow MJ, Heilker R, Hengerer B, Kotey A, et al. An orally bioavailable positive allosteric modulator of the mGlu4 receptor with efficacy in an animal model of motor dysfunction. Bioorg Med Chem Lett. 2010;20:4901–5.
Article
CAS
PubMed
Google Scholar
Le Poul E, Boléa C, Girard F, Poli S, Charvin D, Campo B, Bortoli J, Bessif A, Luo B, Koser AJ, et al. A Potent and Selective Metabotropic Glutamate Receptor 4 Positive Allosteric Modulator Improves Movement in Rodent Models of Parkinson’s Disease. J Pharmacol Exp Ther. 2012;343:167–77.
Article
PubMed
CAS
Google Scholar
Sławińska A, Wierońska JM, Stachowicz K, Marciniak M, Łasoń-Tyburkiewicz M, Gruca P, Papp M, Kusek M, Tokarski K, Doller D, Pilc A. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGlu4 receptors in rodents. Br J Pharmacol. 2013;169:1824–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalinichev M, Le Poul E, Boléa C, Girard F, Campo B, Fonsi M, Royer-Urios I, Browne SE, Uslaner JM, Davis MJ, et al. Characterization of the Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 ADX88178 in Rodent Models of Neuropsychiatric Disorders. J Pharmacol Exp Ther. 2014;350:495–505.
Article
PubMed
PubMed Central
CAS
Google Scholar
Romano C, Yang W-L, O’Malley KL. Metabotropic Glutamate Receptor 5 Is a Disulfide-linked Dimer. J Biol Chem. 1996;271:28612–6.
Article
CAS
PubMed
Google Scholar
Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin J-P. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J. 2011;25:66–77.
Article
CAS
PubMed
Google Scholar
Kammermeier PJ. Functional and pharmacological characteristics of metabotropic glutamate receptors 2/4 heterodimers. Mol Pharmacol. 2012;82:438–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin S, Noetzel MJ, Johnson KA, Zamorano R, Jalan-Sakrikar N, Gregory KJ, Conn PJ, Niswender CM. Selective Actions of Novel Allosteric Modulators Reveal Functional Heteromers of Metabotropic Glutamate Receptors in the CNS. J Neurosc. 2013;34:79–94.
Article
CAS
Google Scholar
Niswender CM, Jones CK, Lin X, Bubser M, Thompson Gray A, Blobaum AL, Engers DW, Rodriguez AL, Loch MT, Daniels JS, et al. Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu2/4 Heteromers. ACS Chem Nerosci. 2016;7:1201–11.
Article
CAS
Google Scholar
Ohtsuki T, Koga M, Ishiguro H, Horiuchi Y, Arai M, Niizato K, Itokawa M, Inada T, Iwata N, Iritani S, et al. A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr Res. 2008;101:9–16.
Article
PubMed
Google Scholar
Kinzie JM, Saugstad JA, Westbrook GL, Segerson TP. Distribution of metabotropic glutamate receptor 7 messenger RNA in the developing and adult rat brain. Neuroscience. 1995;69:167–76.
Article
CAS
PubMed
Google Scholar
Mercier MS, Lodge D. Group III Metabotropic Glutamate Receptors: Pharmacology, Physiology and Therapeutic Potential. Neurochem Res. 2014;39:1876–94.
Article
CAS
PubMed
Google Scholar
Masugi M, Yokoi M, Shigemoto R, Muguruma K, Watanabe Y, Sansig G, van der Putten H, Nakanishi S. Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci. 1999;19:955–63.
CAS
PubMed
Google Scholar
Holscher C, Schmid S, Pilz PK, Sansig G, van der Putten H, Plappert CF. Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behav Brain Res. 2004;154:473–81.
Article
CAS
PubMed
Google Scholar
Goddyn H, Callaerts-Vegh Z, Stroobants S, Dirikx T, Vansteenwegen D, Hermans D, van der Putten H, D’Hooge R. Deficits in acquisition and extinction of conditioned responses in mGluR7 knockout mice. Neurobiol Learn Mem. 2008;90:103–11.
Article
CAS
PubMed
Google Scholar
Callaerts-Vegh Z, Beckers T, Ball SM, Baeyens F, Callaerts PF, Cryan JF, Molnar E, D’Hooge R. Concomitant deficits in working memory and fear extinction are functionally dissociated from reduced anxiety in metabotropic glutamate receptor 7-deficient mice. J Neurosci. 2006;26:6573–82.
Article
CAS
PubMed
Google Scholar
Baskys A, Malenka RC. Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol. 1991;444:687–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayala JE, Niswender CM, Luo Q, Banko JL, Conn PJ. Group III mGluR regulation of synaptic transmission at the SC-CA1 synapse is developmentally regulated. Neuropharmacology. 2008;54:804–14.
Article
CAS
PubMed
Google Scholar
Klar R, Walker AG, Ghose D, Grueter BA, Engers DW, Hopkins CR, Lindsley CW, Xiang Z, Conn PJ, Niswender CM. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. J Neurosci. 2015;35:7600–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tassin V, Girard B, Chotte A, Fontanaud P, Rigault D, Kalinichev M, Perroy J, Acher F, Fagni L, Bertaso F. Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network. Front Neural Circuits. 2016;10:31.
Article
PubMed
PubMed Central
Google Scholar
Klingner CM, Langbein K, Dietzek M, Smesny S, Witte OW, Sauer H, Nenadic I. Thalamocortical connectivity during resting state in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2014;264:111–9.
Article
PubMed
Google Scholar
Mitsukawa K, Yamamoto R, Ofner S, Nozulak J, Pescott O, Lukic S, Stoehr N, Mombereau C, Kuhn R, McAllister KH, et al. A selective metabotropic glutamate receptor 7 agonist: Activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc Natl Acad Sci U S A. 2005;102:18712–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sukoff Rizzo SJ, Leonard SK, Gilbert A, Dollings P, Smith DL, Zhang M-Y, Di L, Platt BJ, Neal S, Dwyer JM, et al. The Metabotropic Glutamate Receptor 7 Allosteric Modulator AMN082: A Monoaminergic Agent in Disguise? J Pharmacol Exp Ther. 2011;338:345–52.
Article
PubMed
CAS
Google Scholar
Kinoshita A, Ohishi H, Neki A, Nomura S, Shigemoto R, Takada M, Nakanishi S, Mizuno N. Presynaptic localization of a metabotropic glutamate receptor, mGluR8, in the rhinencephalic areas: a light and electron microscope study in the rat. Neurosci Lett. 1996;207:61–4.
Article
CAS
PubMed
Google Scholar
Zhai J, Tian MT, Wang Y, Yu JL, Koster A, Baez M, Nisenbaum ES. Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors. Neuropharmacology. 2002;43:223–30.
Article
CAS
PubMed
Google Scholar
Gerlai R, Adams B, Fitch T, Chaney S, Baez M. Performance deficits of mGluR8 knockout mice in learning tasks: the effects of null mutation and the background genotype. Neuropharmacology. 2002;43:235–49.
Article
CAS
PubMed
Google Scholar
Gosnell HB, Silberman Y, Grueter BA, Duvoisin RM, Raber J, Winder DG. mGluR8 Modulates Excitatory Transmission in the Bed Nucleus of the Stria Terminalis in a Stress-Dependent Manner. Neuropsychopharmacology. 2011;36:1599–607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robbins MJ, Starr KR, Honey A, Soffin EM, Rourke C, Jones GA, Kelly FM, Strum J, Melarange RA, Harris AJ, et al. Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Res. 2007;1152:215–27.
Article
CAS
PubMed
Google Scholar
Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE. (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology. 2001;40:311–8.
Article
CAS
PubMed
Google Scholar
Vardigan JD, Huszar SL, McNaughton CH. MK-801 produces a deficit in sucrose preference that is reversed by clozapine, D-serine, and the metabotropic glutamate 5 receptor positive allosteric modulator CDPPB: relevance to negative symptoms associated with schizophrenia? Pharmacol Biochem Behav. 2010;95(2):223–9.
Article
CAS
PubMed
Google Scholar
Stefani MR, Moghaddam B. Activation of type 5 metabotropic glutamate receptors attenuates deficits in cognitive flexibility induced by NMDA receptor blockade. Eur J Pharmacol. 2010;639:26–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horio M, Fujita Y, Hashimoto K. Therapeutic effects of metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on phencyclidine-induced cognitive deficits in mice. Fundam Clin Pharmacol. 2013;27:483–8.
Article
CAS
PubMed
Google Scholar
Cartmell J, Monn JA, Schoepp DD. The Metabotropic Glutamate 2/3 Receptor Agonists LY354740 and LY379268 Selectively Attenuate Phencyclidine versus d-Amphetamine Motor Behaviors in Rats. J Pharmacol Exp Ther. 1999;291:161–70.
CAS
PubMed
Google Scholar
Schlumberger C, Pietraszek M, Gravius A, Klein K-U, Greco S, Morè L, Danysz W. Comparison of the mGlu5 receptor positive allosteric modulator ADX47273 and the mGlu2/3 receptor agonist LY354740 in tests for antipsychotic-like activity. Eur J Pharmacol. 2009;623:73–83.
Article
CAS
PubMed
Google Scholar
Kłodzinska A, Bijak M, Tokarski K, Pilc A. Group II mGlu receptor agonists inhibit behavioural and electrophysiological effects of DOI in mice. Pharmacol Biochem Behav. 2002;73:327–32.
Article
PubMed
Google Scholar
Harich S, Gross G, Bespalov A. Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology. 2007;192:511–9.
Article
CAS
PubMed
Google Scholar
Kawaura K, Karasawa J-I, Hikichi H. Stimulation of the metabotropic glutamate (mGlu) 2 receptor attenuates the MK-801-induced increase in the immobility time in the forced swimming test in rats. Pharmacol Rep. 2016;68:80–4.
Article
CAS
PubMed
Google Scholar
Matrisciano F, Tueting P, Maccari S, Nicoletti F, Guidotti A. Pharmacological Activation of Group-II Metabotropic Glutamate Receptors Corrects a Schizophrenia-Like Phenotype Induced by Prenatal Stress in Mice. Neuropsychopharmacology. 2012;37:929–38.
Article
CAS
PubMed
Google Scholar
Jones CA, Brown AM, Auer DP, Fone KCF. The mGluR2/3 agonist LY379268 reverses post-weaning social isolation-induced recognition memory deficits in the rat. Psychopharmacology. 2011;214:269–83.
Article
CAS
PubMed
Google Scholar
Hikichi H, Kaku A, Karasawa J-I, Chaki S. Stimulation of Metabotropic Glutamate (mGlu) 2 Receptor and Blockade of mGlu1 Receptor Improve Social Memory Impairment Elicited by MK-801 in Rats. J Pharmacol Sci. 2013;122:10–6.
Article
CAS
PubMed
Google Scholar
Wierońska JM, Sławińska A, Stachowicz K, Łasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A. The reversal of cognitive, but not negative or positive symptoms of schizophrenia, by the mGlu2/3 receptor agonist, LY379268, is 5-HT1A dependent. Behav Brain Res. 2013;256:298–304.
Article
PubMed
CAS
Google Scholar
Greco B, Invernizzi RW, Carli M. Phencyclidine-induced impairment in attention and response control depends on the background genotype of mice: reversal by the mGLU2/3 receptor agonist LY379268. Psychopharmacology. 2005;179:68–76.
Article
CAS
PubMed
Google Scholar
Amitai N, Markou A. Effects of metabotropic glutamate receptor 2/3 agonism and antagonism on schizophrenia-like cognitive deficits induced by phencyclidine in rats. Eur J Pharmacol. 2010;639:67–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikiforuk A, Popik P, Drescher KU, van Gaalen M, Relo A-L, Mezler M, Marek G, Schoemaker H, Gross G, Bespalov A. Effects of a Positive Allosteric Modulator of Group II Metabotropic Glutamate Receptors, LY487379, on Cognitive Flexibility and Impulsive-Like Responding in Rats. J Pharmacol Exp Ther. 2010;335:665–73.
Article
CAS
PubMed
Google Scholar
Wierońska JM, Zorn SH, Doller D, Pilc A. Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacol Ther. 2016;157:10–27.
Article
PubMed
CAS
Google Scholar