Wenning GK, Colosimo C, Geser F, Poewe W. Multiple system atrophy. Lancet Neurol. 2004;3:93–103. doi:10.1016/S1474-4422(03)00662-8.
Article
PubMed
Google Scholar
Ubhi K, Low P, Masliah E. Multiple system atrophy: a clinical and neuropathological perspective. Trends Neurosci. 2011;34:581–90. doi:10.1016/j.tins.2011.08.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6. doi:10.1212/01.wnl.0000324625.00404.15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H. α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett. 1998;249:180–2. doi:10.1016/S0304-3940(98)00407-8.
Article
CAS
PubMed
Google Scholar
Burn DJ, Jaros E. Multiple system atrophy: cellular and molecular pathology. Mol Pathol. 2001;54:419–26. doi:10.1136/mp.54.6.419.
CAS
PubMed
PubMed Central
Google Scholar
Miller DW, Johnson JM, Solano SM, Hollingsworth ZR, Standaert DG, Young AB. Absence of α-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm. 2005;112:1613–24. doi:10.1007/s00702-005-0378-1.
Article
CAS
PubMed
Google Scholar
Asi YT, Simpson JE, Heath PR, Wharton SB, Lees AJ, Revesz T, et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia. 2014;62:964–70. doi:10.1002/glia.22653.
Article
PubMed
PubMed Central
Google Scholar
Djelloul M, Holmqvist S, Boza-Serrano A, Azevedo C, Yeung MS, Goldwurm S, et al. Alpha-synuclein expression in the oligodendrocyte lineage: an in vitro and in vivo study using rodent and human models. Stem Cell Reports. 2015;5:174–84. doi:10.1016/j.stemcr.2015.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes JF, Rey NL, Bousset L, Melki R, Brundin P, Angot E. Alpha-synuclein transfers from neurons to oligodendrocytes. Glia. 2014;62:387–98. doi:10.1002/glia.22611.
Article
PubMed
Google Scholar
Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, et al. Prion-like spreading of pathological α-synuclein in brain. Brain. 2013;136:1128–38. doi:10.1093/brain/awt037.
Article
PubMed
PubMed Central
Google Scholar
Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga S, et al. Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem. 2009;284:7940–50. doi:10.1074/jbc.M807482200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hara K, Momose Y, Tokiguchi S, Shimohara M, Terajima K, Onodera O, et al. Multiplex families with multiple system atrophy. Arch Neurol. 2007;64:545–51. doi:10.1001/archneur.64.4.545.
Article
PubMed
Google Scholar
Wüllner U, Schmitt I, Kammal M, Kretzschmar HA, Neumann M. Definite multiple system atrophy in a German family. J Neurol Neurosurg Psychiatry. 2009;80:449–50. doi:10.1136/jnnp.2008.158949.
Article
PubMed
Google Scholar
Wenning GK, Geser F, Krismer F, Seppi K, Duerr S, Boesch S, et al. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol. 2013;12:264–74. doi:10.1016/S1474-4422(12)70327-7.
Article
PubMed
PubMed Central
Google Scholar
May S, Gilman S, Sowell BB, Thomas RG, Stern MB, Colcher A, et al. Potential outcome measures and trial design issues for multiple system atrophy. Mov Disord. 2007;22:2371–7. doi:10.1002/mds.21734.
Article
PubMed
Google Scholar
Watanabe H, Saito Y, Terao S, Ando T, Kachi T, Mukai E, et al. Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain. 2002;125:1070–83. doi:10.1093/brain/awf117.
Article
PubMed
Google Scholar
Yabe I, Soma H, Takei A, Fujiki N, Yanagihara T, Sasaki H. MSA-C is the predominant clinical phenotype of MSA in Japan: analysis of 142 patients with probable MSA. J Neurol Sci. 2006;249:115–21. doi:10.1016/j.jns.2006.05.064.
Article
PubMed
Google Scholar
Scholz SW, Houlden H, Schulte C, Sharma M, Li A, Berg D, et al. SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol. 2009;65:610–4. doi:10.1002/ana.21685.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitsui J, Matsukawa T, Sasaki H, Yabe I, Matsushima M, Dürr A, et al. Variants associated with Gaucher disease in multiple system atrophy. Ann Clin Transl Neurol. 2015;2:417–26. doi:10.1002/acn3.185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med. 2013;369:233–44. doi:10.1056/NEJMoa1212115.
Article
Google Scholar
Sailer A, Scholz SW, Nalls MA, Shulte C, Federoff M, Price TR, et al. A genome-wide association study in multiple system atrophy. Neurology. 2016;87:1591–8. doi:10.1212/WNL.0000000000003221:1526-632X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nature Rev Genet. 2006;7:85–97. doi:10.1038/nrg1767.
Article
CAS
PubMed
Google Scholar
Lee JA, Lupski JR. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron. 2006;52:103–21. doi:10.1016/j.neuron.2006.09.27.
Article
CAS
PubMed
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53. doi:10.1038/nature08494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lupski JR. Genomic rearrangements and sporadic disease. Nature Genet. 2007;239(suppl 7):43–7. doi:10.1038/ng2084.
Article
Google Scholar
Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A, et al. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry. 2017;22:430–40. doi:10.1038/mp.2016.88.
Article
CAS
PubMed
Google Scholar
Morrow EM. Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry. 2010;49:1091–104. doi:10.1016/j.jaac.2010.08.009.
PubMed
PubMed Central
Google Scholar
Sasaki H, Emi M, Iijima H, Ito N, Sato H, Yabe I, et al. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol Brain. 2011;4 doi:10.1186/1756-6606-4-24.
Furguson MC, Garland EM, Hedges L, Womack-Nunley B, Hamid R, Phillips IIIJA, et al. SHC2 copy number in multiple system atrophy (MSA). Clin Auton Res. 2014;24:25–30. doi:10.1007/s10286-013-0216-8.
Article
Google Scholar
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291:1304–51. doi:10.1126/science.1058040.
Article
CAS
PubMed
Google Scholar
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee-a new twist in the chromosomal speciation theory. Mol Biol Evol. 2012;30:853–64. doi:10.1093/molbev/mss272.
Article
PubMed
PubMed Central
Google Scholar
Cognata VL, Morello G, D’Agata V, Cavallaro S. Copy number variability in Parkinson’s disease: assembling the puzzle through a systems biology approach. Hum Genet. 2017;136:13–37. doi:10.1007/s00439-016-1749-4.
Article
PubMed
Google Scholar
Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genet. 2006;38:1038–42. doi:10.1038/ng1862.
Article
CAS
PubMed
Google Scholar
Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9. doi:10.1126/science.1138659.
Article
CAS
PubMed
PubMed Central
Google Scholar
The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008;455:237–241; doi:10.1038/nature07239.
McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nature Genet. 2008;40:1107–12. https://doi.org/10.1038/ng.215.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Cid R, Riveira-Munoz E, Zeeuwen PLJM, Robarge J, Liao W, Dannhauser EN, et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nature Genet. 2009;41:211–5. doi:10.1038/ng.313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boon-Peng H, Jusoh JAM, Marshall CR, Majid F, Danuri N, Basir F, et al. Rare copy number variants identified suggest the regulating pathways in hypertension-related left ventricular hypertrophy. PLoS One. 2016;11:e0148755. doi:10.1371/journal.pone.0148755.
Article
PubMed
PubMed Central
Google Scholar
Yu L, Wynn J, Ma L, Guha S, Mychaliska GB, Crombleholme TM, et al. De novo copy number variants are associated with congenital diaphragmatic hernia. J Med Genet. 2012;49:650–9. doi:10.1136/jmedgenet-2012-101135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bendjilali N, Kim H, Weinsheimer S, Guo DE, Kwok P-Y, Zaroff JG, et al. A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation. PLoS One. 2013;8:e71434. doi:10.1371/journal.pone.0071434.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ettle B, Schlachetzki JCM, Winkler J. Oligodendroglia and myelin in neurodegenerative diseases: more than just bystanders? Mol Neurobiol. 2016;53:3046–62. doi:10.1007/s12035-015-9205-3.
Article
CAS
PubMed
Google Scholar
Peferoen L, Kipp M, van der Valk P, van Noort JM. Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2013;141:302–13. https://doi.org/10.1111/imm.12163.
Article
Google Scholar
Yao M, Lee S-K, Lee B, Ruiz EC, Pfaff SL, Gill GN. Small CTD phosphatases function in silencing neuronal gene expression. Science. 2005;307:596–600. doi:10.1126/science.1100801.
Article
Google Scholar
Peng C, Togayachi A, Kwon Y-D, Xie C, Wu G, Zou X, et al. Identification of a novel human UDP-GalNAc transferase with unique catalytic activity and expression profile. Biochem Biophys Res Commun. 2010;402:680–6. doi:10.1016/j.bbrc.2010.10.084.
Article
CAS
PubMed
Google Scholar
Kuslich CD, Kobori JA, Mohapatra G, Gregorio-King C, Donlon TA. Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet. 1999;64:70–6. doi:10.1086/302177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guertin MJ, Lis JT. Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr Opin Genet Dev. 2013;23:116–23. doi:10.1016/j.gde.2012.11.008.
Article
CAS
PubMed
Google Scholar
Stavreva DA, Hager GL. Chromatin structure and gene regulation: a dynamic view of enhancer function. Nucleus. 2015;6:442–8. doi:10.1080/19491034.2015.1107689.
Article
CAS
PubMed
Google Scholar
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nature Rev Genet. 2009;10:691–703. doi:10.1038/nrg2640.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dweep H, Kubikova N, Gretz N, Voskarides K, Felekkis K. Homo Sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity. Sci Rep. 2015;5:12163. doi:10.1038/srep12163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nature Rev Genet. 2002;3:370–9. doi:10.1038/nrg798.
Article
CAS
PubMed
Google Scholar
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. doi:10.1146/annurev-biochem-051410-092902.
Article
CAS
PubMed
Google Scholar
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet. 2011;12:187–215. doi:10.1146/annurev-genom-082509-141802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karczewski KJ, Snyder M, Altman RB, Tatonetti NP. Coherent functional modules improve transcription factor target identification, cooperativity prediction, and disease association. PLoS Genet. 2014;10:e1004122. doi:10.1371/journal.pgen.1004122.
Article
PubMed
PubMed Central
Google Scholar
Spielmann M, Mundlos S. Looking beyond the genes: the role of non-coding variants in human disease. Hum Mol Genet. 2016;25(R2):R157–65. doi:10.1093/hmg/ddw205.
Article
CAS
PubMed
Google Scholar
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. doi:10.1038/35057062.
Article
Google Scholar