Gründer S, Pusch M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology. 2015;94:9–18.
Article
PubMed
Google Scholar
Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–7.
Hesselager M, Timmermann DB, Ahring PK. pH dependency and desensitization kinetics of Heterologously expressed combinations of acid-sensing Ion Channel subunits. J Biol Chem. 2004;279:11006–15.
Article
CAS
PubMed
Google Scholar
Baron A, Waldmann R, Lazdunski M. ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol. 2002;539:485–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display Novel Channel properties and contribute to acidosis-induced neuronal death. J Neurosci. 2011;31:9723–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu L-J, Duan B, Mei Y-D, Gao J, Chen J-G, Zhuo M, et al. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem. 2004;279:43716–24.
Article
CAS
PubMed
Google Scholar
Gao J, Wu LJ, Xu L, Le XT. Properties of the proton-evoked currents and their modulation by CA 2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain Res. 2004;1017:197–207.
Article
CAS
PubMed
Google Scholar
Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ. Acid-sensing Ion Channel 2 (ASIC2) modulates ASIC1 H+−activated currents in hippocampal neurons. J Biol Chem. 2004;279:18296–305.
Article
CAS
PubMed
Google Scholar
Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron. 2002;34:463–77.
Article
CAS
PubMed
Google Scholar
Liu MG, Li HS, Li WG, Wu YJ, Deng SN, Huang C, et al. Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms. Sci Rep. 2016;6:1–14.
Article
Google Scholar
Mango D, Braksator E, Battaglia G, Marcelli S, Mercuri NB, Feligioni M, et al. Acid-sensing ion channel 1a is required for mGlu receptor dependent long-term depression in the hippocampus. Pharmacol Res. 2017;119:12–9.
Article
CAS
PubMed
Google Scholar
Vralsted VC, Price MP, Du J, Schnizler M, Wunsch AM, Ziemann AE, et al. Expressing acid-sensing ion channel 3 in the brain alters acid-evoked currents and impairs fear conditioning. Genes Brain Behav. 2011;10:444–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taugher RJ, Lu Y, Fan R, Ghobbeh A, Kreple CJ, Faraci FM, et al. ASIC1A in neurons is critical for fear-related behaviors. Genes Brain Behav. 2017;16:745–55.
CAS
PubMed
Google Scholar
Wemmie JA, Coryell MW, Askwith CC, Lamani E, Leonard AS, Sigmund CD, et al. Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci. 2004;101:3621–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong Z-G, Zhu X-M, Chu X-P, Minami M, Hey J, Wei W-L, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118:687–98.
Article
CAS
PubMed
Google Scholar
Duan B, Wang Y-Z, Yang T, Chu X-P, Yu Y, Huang Y, et al. Extracellular Spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci. 2011;31:2101–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu L, Liu X, Yang Y, Luo D, Zheng X. ASICs aggravate acidosis-induced injuries during ischemic reperfusion. Neurosci Lett. 2010;479:63–8.
Article
CAS
PubMed
Google Scholar
Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nature Med. 2007;13:1483–9.
Chu X-P, Xiong Z-G. Physiological and pathological functions of acid-sensing ion channels in the central nervous system. Curr Drug Targets. 2012;13:263–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzales EB, Sumien N. Acidity and acid-sensing ion channels in the normal and Alzheimer’s disease brain. J Alzheimers Dis. 2017;57:1137–44.
Article
CAS
PubMed
Google Scholar
Chesler M. Regulation and modulation of pH in the brain; 2003. p. 1183–221.
Google Scholar
Rehncrona S. Brain acidosis. Ann Emerg Med. 1985;14:770–6.
Article
CAS
PubMed
Google Scholar
Immke DC, McCleskey EW. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci. 2001;4:869–70.
Article
CAS
PubMed
Google Scholar
Allen NJ, Attwell D. Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischaemia-related signals. J Physiol. 2002;543:521–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith ES, Cadiou H, McNaughton PA. Arachidonic acid potentiates acid-sensing ion channels in rat sensory neurons by a direct action. Neuroscience. 2007;145:686–98.
Article
CAS
PubMed
Google Scholar
Tombaugh GC, Somjen GG. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J Physiol. 1996;493:719–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura M, Jang I-S. Acid modulation of tetrodotoxin-resistant Na+ channels in rat nociceptive neurons. Neuropharmacol. 2015;90:82–9.
Article
CAS
Google Scholar
Nakamura M, Kim DY, Jang IS. Acid modulation of tetrodotoxin-sensitive Na+ channels in large-sized trigeminal ganglion neurons. Brain Res. 2016;1651:44–52.
Article
CAS
PubMed
Google Scholar
Sepulveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+−transport channels. Physiol Rev. 2015;95:179–217.
Article
PubMed
PubMed Central
Google Scholar
Mcdonald JW, Bhattacharyya T, Sensi SL, Lobner D, Ying HS, Canzoniero LMT, et al. Extracellular Acidity Potentiates AMPA Receptor-Mediated Cortical Neuronal Death. J Neurosci. 1998;18:6290–9.
Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Lett to Nat. 1990;345:347–50.
Article
CAS
Google Scholar
Bennett NC, Faulkes CG. African mole-rats: ecology and Eusociality. Cambridge: Cambridge University Press; 2000.
Brett RA. The ecology of naked mole-rat colonies: burrowing, food and limiting factors. In: Sherman P, Jarvis J, Alexander R, editors. Biol. Naked Mole-Rat. Princeton: Princeton University Press; 1991. p. 137–84.
Jarvis JUM. Reproduction of naked mole-rats. In: Sherman P, Jarvis J, Alexander M, editors. Biol. Naked Mole-Rat. Princeton: Princeton University Press; 1991. p. 384–425.
Schuhmacher L, Husson Z, Smith ES. The naked mole-rat as an animal model in biomedical research: current perspectives. Open Access Anim Physiol. 2015;7:137.
Google Scholar
Ruby JG, Smith M, Buffenstein R. Naked mole-rat mortality rates defy gompertzian laws by not increasing with age. Elife. 2018;7:1–18.
Article
Google Scholar
Edrey YH, Medina DX, Gaczynska M, Osmulski PA, Oddo S, Caccamo A, et al. Amyloid beta and the longest-lived rodent: the naked mole-rat as a model for natural protection from alzheimer’s disease. Neurobiol Aging. 2013;34:2352–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orr ME, Garbarino VR, Salinas A, Buffenstein R. Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent. Neurobiol Aging. 2015;36:1496–504.
Article
CAS
PubMed
Google Scholar
Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M, Mao Z, et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc Natl Acad Sci U S A. 2009;106:19352–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499:346–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ. Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell. 2010;9:626–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park TJ, Lu Y, Jüttner R, Smith ESJ, Hu J, Brand A, et al. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol. 2008;6:0156–70.
Article
CAS
Google Scholar
Smith ESJ, Omerbašić D, Lechner SG, Anirudhan G, Lapatsina L, Lewin GR. The molecular basis of acid insensitivity in the African naked mole-rat. Science. 2011;334:1557–60.
Article
CAS
PubMed
Google Scholar
Smith ESJ, Blass GRC, Lewin GR, Park TJ. Absence of histamine-induced itch in the African naked mole-rat and “rescue” by substance P. Mol Pain. 2010;6:29.
PubMed
PubMed Central
Google Scholar
Lavinka PC, Brand A, Landau VJ, Wirtshafter D, Park TJ. Extreme tolerance to ammonia fumes in African naked mole-rats: animals that naturally lack neuropeptides from trigeminal chemosensory nerve fibers. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol. 2009;195:419–27.
Article
CAS
Google Scholar
Larson J, Park TJ. Extreme hypoxia tolerance of naked mole-rat brain. Neuroreport. 2009;20:1634–7.
Article
PubMed
Google Scholar
Park TJ, Reznick J, Peterson BL, Blass G, Omerba D, Bennett NC, et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science. 2017;311:307–11.
Peterson BL, Larson J, Buffenstein R, Park TJ, Fall CP. Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus. PLoS One. 2012;7:1–8.
Google Scholar
Peterson BL, Park TJ, Larson J. Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals. Neurosci Lett. 2012;506:342–5.
Article
CAS
PubMed
Google Scholar
Schuhmacher L-N, Callejo G, Srivats S, Smith ESJ. Naked mole-rat acid-sensing ion channel 3 forms nonfunctional homomers, but functional heteromers. J Biol Chem. 2018;293:1756–66.
Article
CAS
PubMed
Google Scholar
Schuhmacher L, Smith ESJ. Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat. Mol Brain. 2016;9(1):97.
Omerbašić D, Smith ESJ, Moroni M, Homfeld J, Eigenbrod O, Bennett NC, et al. Hypofunctional TrkA accounts for the absence of pain sensitization in the African naked mole-rat. Cell Rep. 2016;17:748–58.
Article
PubMed
PubMed Central
Google Scholar
Penz OK, Fuzik J, Kurek AB, Romanov R, Larson J, Park TJ, et al. Protracted brain development in a rodent model of extreme longevity. Sci Rep. 2015;5:11592.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baron A, Lingueglia E. Pharmacology of acid-sensing ion channels – physiological and therapeutical perspectives. Neuropharmacology. 2015;94:19–35.
Article
CAS
PubMed
Google Scholar
Evans MS, Collings MA, Brewer GJ. Electrophysiology of embryonic, adult and aged rat hippocampal neurons in serum-free culture. J Neurosci Methods. 1998;79:37–46.
Article
CAS
PubMed
Google Scholar
Yang J, Thio LL, Clifford DB, Zorumski CF. Electrophysiological properties of identified postnatal rat hippocampal pyramidal neurons in primary culture. Dev Brain Res. 1993;71:19–26.
Article
CAS
Google Scholar
Wang X, Zhang XG, Zhou TT, Li N, Jang CY, Xiao ZC, et al. Elevated neuronal excitability due to modulation of the voltage-gated sodium channel Nav1.6 by Aβ1-42. Front Neurosci. 2016;10:1–9.
Google Scholar
Catterall WA. Voltage-gated sodium channels at 60 : structure, function and. Pathophysiology. 2012;11:2577–89.
Google Scholar
Shams I, Avivi A, Nevo E. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic – hypercapnic stresses. Comp Biochem Physiol A Mol Integr Physiol. 2005;142:376–82.
Mcnab BK. The metabolism of fossorial rodents: a study of convergence. Ecol Soc Am. 1966;47:712–33.
Google Scholar
Huang Y, Jiang N, Li J, Ji Y-H, Xiong Z-G, Zha X. Two aspects of ASIC function: synaptic plasticity and neuronal injury. Neuropharmacology. 2015;94:1–6.
Schuhmacher L, St E, Smith J. Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat. Mol Brain. 2016:1–12.
Ding D, Moskowitz SI, Li R, Lee SB, Esteban M, Tomaselli K, et al. Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp Neurol. 2000;162:1–12.
Article
CAS
PubMed
Google Scholar
Zeng W-Z, Liu D-S, Buan B, Song X-L, Wang X, Wei D, et al. Molecular mechanism of constitutive endocytosis of acid-sensing Ion Channel 1a and its protective function in acidosis-induced neuronal death. J Neurosci. 2013;33:7066–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao B, Wang S, Yang G, Sun X, Zhao S, Lin L, et al. HIF-1α contributes to hypoxia adaptation of the naked mole rat. Oncotarget. 2017;8:109941–51.
PubMed
PubMed Central
Google Scholar