Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012;73(5):862–85.
Article
CAS
PubMed
Google Scholar
Clapham DE. Calcium signaling. Cell. 2007;131:1047–58.
Article
CAS
PubMed
Google Scholar
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29.
Article
CAS
PubMed
Google Scholar
Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science. 1994;264(5155):107–11.
Article
CAS
PubMed
Google Scholar
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci. 2014;71:2787–814.
Article
CAS
PubMed
Google Scholar
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.
Article
CAS
PubMed
Google Scholar
Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 1996;58:329–48.
Article
CAS
PubMed
Google Scholar
Leresche N, Lambert RC. T-type calcium channels in synaptic plasticity. Channels. 2017;11:121–39.
Article
PubMed
Google Scholar
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67:821–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fox AP, Nowycky MC, Tsien RW. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987;394:149–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3:8.
Article
CAS
Google Scholar
Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclays J, Williamson MP, et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature. 1998;391(6670):896–900.
Article
CAS
PubMed
Google Scholar
Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E. Nickel block of three cloned T-type calcium channels: low concentrations selectively block α1H. Biophys J. 1999;77:3034–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamponi GW, Bourinet E, Snutch TP. Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J Membr Biol. 1996;151:77–90.
Article
CAS
PubMed
Google Scholar
Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev. 2003;83:117–61.
Article
CAS
PubMed
Google Scholar
Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, et al. Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature. 2019;576:492–7.
Article
CAS
PubMed
Google Scholar
Jacus MO, Uebele VN, Renger JJ, Todorovic SM. Presynaptic CaV32 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci. 2012;32:9374–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, et al. A Ca v3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem. 2012;287(4):2810–8.
Article
CAS
PubMed
Google Scholar
Huguenard JR, Prince DA. A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci. 1992;12(10):3804–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez FR, Iftinca MC, Zamponi GW, Turner RW. Modeling temperature- and Cav3 subtype-dependent alterations in T-type calcium channel mediated burst firing. Mol Brain. 2021;14:115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, et al. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci. 2007;27:3305–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW. The “window” T-type calcium current in brain dynamics of different behavioural states. J Physiol. 2005;562:121–9.
Article
CAS
PubMed
Google Scholar
Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V. The, “window” component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol. 1997;505(3):689–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1G T-type Ca2+ channels. Neuron. 2001;31(1):35–45.
Article
CAS
PubMed
Google Scholar
Coulter DA, Huguenard JR, Prince DA. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol. 1989;414(1):587–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang R, Lewin GR. The Cav3.2 T-type calcium channel regulates temporal coding in mouse mechanoreceptors. J Physiol. 2011;589:2229–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harding EK, Dedek A, Bonin RP, Salter MW, Snutch TP, Hildebrand ME. The T-type calcium channel antagonist, Z944, reduces spinal excitability and pain hypersensitivity. Br J Pharmacol. 2021;178:3517–32.
Article
CAS
PubMed
Google Scholar
Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science. 1979;2003(299):1237–40.
Google Scholar
Candelas M, Reynders A, Arango-Lievano M, Neumayer C, Fruquière A, Demes E, et al. Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci Rep. 2019;9:3112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cain SM, Snutch TP. Contributions of T-type calcium channel isoforms to neuronal firing. Channels. 2010;4:475–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chemin J, Monteil A, Perez-Reyes E, Bourinet E, Nargeot J, Lory P. Specific contribution of human T-type calcium channel isotypes (α1G, α1H and α1l) to neuronal excitability. J Physiol. 2002;540:3–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tscherter A, David F, Ivanova T, Deleuze C, Renger JJ, Uebele VN, et al. Minimal alterations in T-type calcium channel gating markedly modify physiological firing dynamics. J Physiol. 2011;589(7):1707–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joksimovic SM, Eggan P, Izumi Y, Joksimovic SL, Tesic V, Dietz RM, et al. The role of T-type calcium channels in the subiculum: to burst or not to burst? J Physiol. 2017;595(19):6327–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubreuil AS, Boukhaddaoui H, Desmadryl G, Martinez-Salgado C, Moshourab R, Lewin GR, et al. Role of T-type calcium current in identified D-hair mechanoreceptor neurons studied in vitro. J Neurosci. 2004;24(39):8480–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tringham E, Powell KL, Cain SM, Kuplast K, Mezeyova J, Weerapura M, et al. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci Transl Med. 2012;4:121ra19.
Article
PubMed
CAS
Google Scholar
Cain SM, Tyson JR, Choi H-B, Ko R, Lin PJC, LeDue JM, et al. CaV 3.2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia. 2018;59:778–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kampa BM, Letzkus JJ, Stuart GJ. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. J Physiol. 2006;574(1):283–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Udakis M, Pedrosa V, Chamberlain SEL, Clopath C, Mellor JR. Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output. Nat Commun. 2020;11:4395.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, et al. CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci. 2006;24:2581–94.
Article
PubMed
Google Scholar
Kavalali ET, Zhuo M, Bito H, Tsien RW. Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron. 1997;18:651.
Article
CAS
PubMed
Google Scholar
Bourinet E, Francois A, Laffray S. T-type calcium channels in neuropathic pain. Pain. 2016;157:S15-22.
Article
PubMed
Google Scholar
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev. 2014;94:81–140.
Article
CAS
PubMed
Google Scholar
Chen WK, Liu IY, Chang YT, Chen YC, Chen CC, Yen CT, et al. Cav3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci. 2010;30:10360.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park C, Kim JH, Yoon BE, Choi EJ, Lee CJ, Shin HS. T-type channels control the opioidergic descending analgesia at the low threshold-spiking GABAergic neurons in the periaqueductal gray. Proc Natl Acad Sci USA. 2010;107:14857.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berta T, Qadri Y, Tan PH, Ji RR. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin Therap Targets. 2017;21:695–703.
Article
CAS
Google Scholar
Krames ES. The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med (United States). 2014;15:1669–85.
Article
Google Scholar
Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Gadotti VM, Chen L, Souza IA, Huang S, Wang D, et al. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci. 2019;22(10):1659–68.
Article
CAS
PubMed
Google Scholar
Cichon J, Blanck TJJ, Gan WB, Yang G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat Neurosci. 2017;20(8):1122–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bliss TVP, Collingridge GL, Kaang BK, Zhuo M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci. 2016;17(8):485–96.
Article
CAS
PubMed
Google Scholar
Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008;31(4):199–207.
Article
CAS
PubMed
Google Scholar
Luo C, Kuner T, Kuner R. Synaptic plasticity in pathological pain. Trends Neurosci. 2014;37:343–55.
Article
CAS
PubMed
Google Scholar
Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18:20–30.
Article
PubMed
CAS
Google Scholar
Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984;310(5977):501–2.
Article
CAS
PubMed
Google Scholar
Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 1999;19(6):1895–911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourinet E, Alloui A, Monteil A, Barrère C, Couette B, Poirot O, et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. 2005;24:315–24.
Article
CAS
PubMed
Google Scholar
Yue J, Liu L, Liu Z, Shu B, Zhang Y. Upregulation of T-type Ca2+ channels in primary sensory neurons in spinal nerve injury. Spine (Phila Pa 1976). 2013;38:463.
Article
Google Scholar
Li Y, Tatsui CE, Rhines LD, North RY, Harrison DS, Cassidy RM, et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav32) in paclitaxel-induced peripheral neuropathy. Pain. 2017;158:417–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scroggs RS, Fox AP. Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol. 1992;445(1):639–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coste B, Crest M, Delmas P. Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J General Physiol. 2007;129:57–77.
Article
CAS
Google Scholar
Watanabe M, Ueda T, Shibata Y, Kumamoto N, Shimada S, Ugawa S. Expression and regulation of Cav3.2 T-Type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS ONE. 2015;10:5.
Article
Google Scholar
Rose KE, Lunardi N, Boscolo A, Dong X, Erisir A, Jevtovic-Todorovic V, et al. Immunohistological demonstration of CaV3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse. Neuroscience. 2013;250:263–74.
Article
CAS
PubMed
Google Scholar
Nelson MT, Joksovic PM, Perez-Reyes E, Todorovic SM. The endogenous redox agent l-cysteine induces T-type Ca2+ channel-dependent sensitization of a novel subpopulation of rat peripheral nociceptors. J Neurosci. 2005;25(38):8766–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson MT, Joksovic PM, Su P, Kang HW, Van Deusen A, Baumgart JP, et al. Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J Neurosci. 2007;27(46):12577–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JB, Martinez-Salgado C, Heppenstall PA, Lewin GR. A T-type calcium channel required for normal function of a mammalian mechanoreceptor. Nat Neurosci. 2003;6(7):724–30.
Article
CAS
PubMed
Google Scholar
Aptel H, Hilaire C, Pieraut S, Boukhaddaoui H, Mallié S, Valmier J, et al. The Cav3.2/α1H T-type Ca2+ current is a molecular determinant of excitatory effects of GABA in adult sensory neurons. Mol Cell Neurosci. 2007;36:293–303.
Article
CAS
PubMed
Google Scholar
François A, Schüetter N, Laffray S, Sanguesa J, Pizzoccaro A, Dubel S, et al. The low-threshold calcium channel Cav3.2 determines low-threshold mechanoreceptor function. Cell Rep. 2015;10:370–82.
Article
PubMed
CAS
Google Scholar
Todorovic SM, Jevtovic-Todorovic V. Neuropathic pain: role for presynaptic T-type channels in nociceptive signaling. Pflugers Archiv Eur J Physiol. 2013;465:921–7.
Article
CAS
Google Scholar
Cai S, Gomez K, Moutal A, Khanna R. Targeting T-type/CaV3.2 channels for chronic pain. Transl Res. 2021;234:20–30.
Article
CAS
PubMed
Google Scholar
Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, et al. In vivo silencing of the CaV3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain. 2009;145:184–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marger F, Gelot A, Alloui A, Matricon J, Sanguesa Ferrer JF, Barrère C, et al. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc Natl Acad Sci USA. 2011;108(27):11268–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, et al. The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron. 2014;83:1144–58.
Article
PubMed
CAS
Google Scholar
Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, et al. Attenuated pain responses in mice lacking CaV3.2 T-type channels. Genes Brain Behav. 2007;6:425–31.
Article
CAS
PubMed
Google Scholar
Na HS, Choi S, Kim J, Park J, Shin HS. Attenuated neuropathic pain in CaV3.1 null mice. Mol Cells. 2008;25:242.
CAS
PubMed
Google Scholar
Leblanc BW, Lii TR, Huang JJ, Chao YC, Bowary PM, Cross BS, et al. T-type calcium channel blocker Z944 restores cortical synchrony and thalamocortical connectivity in a rat model of neuropathic pain. Pain. 2016;157:255–63.
Article
CAS
PubMed
Google Scholar
Hartung JE, Moy JK, Loeza-Alcocer E, Nagarajan V, Jostock R, Christoph T, et al. Voltage gated calcium channels in human dorsal root ganglion neurons. Pain. 2021. https://doi.org/10.1097/j.pain.0000000000002465.
Article
PubMed
Google Scholar
Waxman SG, Zamponi GW. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. 2014;17(2):153–63.
Article
CAS
PubMed
Google Scholar
Hoffmann T, Kistner K, Joksimovic SLJ, Todorovic SM, Reeh PW, Sauer SK. Painful diabetic neuropathy leads to functional CaV3.2 expression and spontaneous activity in skin nociceptors of mice. Exp Neurol. 2021;346:113838.
Article
CAS
PubMed
Google Scholar
Todorovic SM, Jevtovic-Todorovic V, Meyenburg A, Mennerick S, Perez-Reyes E, Romano C, et al. Redox modulation of T-Type calcium channels in rat peripheral nociceptors. Neuron. 2001;31(1):75–85.
Article
CAS
PubMed
Google Scholar
Takahashi T, Aoki Y, Okubo K, Maeda Y, Sekiguchi F, Mitani K, et al. Upregulation of Cav3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Pain. 2010;150:183–91.
Article
CAS
PubMed
Google Scholar
Joksimovic SL, Joksimovic SM, Manzella FM, Asnake B, Orestes P, Raol YH, et al. Novel neuroactive steroid with hypnotic and T-type calcium channel blocking properties exerts effective analgesia in a rodent model of post-surgical pain. Br J Pharmacol. 2020;177:1735–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12:600.
Article
CAS
Google Scholar
Gambeta E, Gandini MA, Souza IA, Zamponi GW. Cav3.2 calcium channels contribute to trigeminal neuralgia. Pain. 2022. https://doi.org/10.1097/j.pain.0000000000002652.
Article
PubMed
Google Scholar
Dong W, Jin SC, Allocco A, Zeng X, Sheth AH, Panchagnula S, et al. Exome sequencing implicates impaired GABA signaling and neuronal ion transport in trigeminal neuralgia. iScience. 2020;23:101552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montera M, Goins A, Cmarko L, Weiss N, Westlund KN, Alles SRA. Trigeminal neuropathic pain is alleviated by inhibition of Cav3.3 T-type calcium channels in mice. Channels. 2021;15:31–7.
Article
PubMed
Google Scholar
Choi S, Yu E, Hwang E, Llinás RR. Pathophysiological implication of CaV3.1 T-type Ca2+ channels in trigeminal neuropathic pain. Proc Natl Acad Sci USA. 2016;113:2270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harding EK, Fung SW, Bonin RP. Insights into spinal dorsal horn circuit function and dysfunction using optical approaches. Front Neural Circ. 2020;14:31.
Article
CAS
Google Scholar
Petitjean H, Pawlowski SA, Fraine SL, Sharif B, Hamad D, Fatima T, et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep. 2015;13:1246–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell. 2014;159(6):1417–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peirs C, Williams SPG, Zhao X, Walsh CE, Gedeon JY, Cagle NE, et al. Dorsal horn circuits for persistent mechanical pain. Neuron. 2015;87(4):797–812.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Investig. 2013;123(9):4050–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YL, Tsaur ML, Wang SW, Wang TY, Hung YC, Lin CS, et al. Chronic intrathecal infusion of mibefradil, ethosuximide and nickel attenuates nerve ligation-induced pain in rats. Br J Anaesth. 2015;115(1):105–11.
Article
CAS
PubMed
Google Scholar
Wu J, Peng S, Xiao L, Cheng X, Kuang H, Zhu M, et al. Cell-type specific distribution of T-type calcium currents in lamina II neurons of the rat spinal cord. Front Cell Neurosci. 2018;12:370.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu PD, Randic M. Low- and high-voltage-activated calcium currents in rat spinal dorsal horn neurons. J Neurophysiol. 1990;63(2):273–85.
Article
CAS
PubMed
Google Scholar
Ku WH, Schneider SP. Multiple T-type Ca2+ current subtypes in electrophysiologically characterized hamster dorsal horn neurons: possible role in spinal sensory integration. J Neurophysiol. 2011;106(5):2486–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu M, Yan Y, Cao X, Zeng F, Xu G, Shen W, et al. Electrophysiological and morphological features of rebound depolarization characterized interneurons in rat superficial spinal dorsal horn. Front Cell Neurosci. 2021;15: 736879.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prescott SA, De Koninck Y. Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization. J Neurosci. 2005;25(19):4743–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinke B, Balzer E, Sandkühler J. Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci. 2004;19:103–11.
Article
CAS
PubMed
Google Scholar
Drdla R, Sandkühler J. Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo. Mol Pain. 2008;4:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bonin RP, De Koninck Y. A spinal analog of memory reconsolidation enables reversal of hyperalgesia. Nat Neurosci. 2014;17(8):1043–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandkühler J, Gruber-Schoffnegger D. Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol. 2012;12:18–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou LJ, Peng J, Xu YN, Zeng WJ, Zhang J, Wei X, et al. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep. 2019;27(13):3844–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng XJ, Ma LX, Jiao C, Kuang HX, Zeng F, Zhou XY, et al. Nerve injury elevates functional Cav3.2 channels in superficial spinal dorsal horn. Mol Pain. 2019;15:1744806919836569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin SM, Cai Y, Itson-Zoske B, Qiu C, Hao X, Xiang H, et al. Enhanced T-type calcium channel 3.2 activity in sensory neurons contributes to neuropathic-like pain of monosodium iodoacetate-induced knee osteoarthritis. Mol Pain. 2020;16:1744806920963807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen XJ, Li ZJ, Chen ZX, Fang ZY, Yang CX, Li H, et al. Intrathecal administration of Cav3.2 and Cav3.3 antisense oligonucleotide reverses tactile allodynia and thermal hyperalgesia in rats following chronic compression of dorsal root of ganglion. Acta Pharmacol Sin. 2006;27:1547.
Article
CAS
PubMed
Google Scholar
Wen X-J, Xu S-Y, Chen Z-X, Yang C-X, Liang H, Li H. The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia. Pharmacology. 2010;85:295–300.
Article
CAS
PubMed
Google Scholar
Matthews EA, Dickenson AH. Effects of ethosuximide, a T-type Ca2+ channel blocker, on dorsal horn neuronal responses in rats. Eur J Pharmacol. 2001;415(2–3):141–9.
Article
CAS
PubMed
Google Scholar
Cheng JK, Lin CS, Chen CC, Yang JR, Chiou LC. Effects of intrathecal injection of T-type calcium channel blockers in the rat formalin test. Behav Pharmacol. 2007;18(1):1–8.
Article
PubMed
CAS
Google Scholar
Willis WD, Westlund KN. Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol. 1997;14(1):2–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: Is there a role for primary somatosensory cortex? Proc Natl Acad Sci USA. 1999;96:7705–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen FY, Chen ZY, Zhong W, Ma LQ, Chen C, Yang ZJ, et al. Alleviation of neuropathic pain by regulating T-type calcium channels in rat anterior cingulate cortex. Mol Pain. 2015;11:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim D, Park D, Choi S, Lee S, Sun M, Kim C, et al. Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science. 1979;2003:302.
Google Scholar
Leresche N, Parri HR, Erdemli G, Guyon A, Turner JP, Williams SR, et al. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci. 1998;18(13):4842–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F. Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain. 2003;105(1–2):159–68.
Article
CAS
PubMed
Google Scholar
Flatters SJL, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain. 2004;109(1–2):150–61.
Article
CAS
PubMed
Google Scholar
Hamidi GA, Ramezani MH, Arani MN, Talaei SA, Mesdaghinia A, Banafshe HR. Ethosuximide reduces allodynia and hyperalgesia and potentiates morphine effects in the chronic constriction injury model of neuropathic pain. Eur J Pharmacol. 2012;674(2–3):260–4.
Article
CAS
PubMed
Google Scholar
Ferreira J, Santos ARS, Calixto JB. Antinociception produced by systemic, spinal and supraspinal administration of amiloride in mice. Life Sci. 1999;65(10):1059–66.
Article
CAS
PubMed
Google Scholar
Todorovic SM, Meyenburg A, Jevtovic-Todorovic V. Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res. 2002;951(2):336–40.
Article
CAS
PubMed
Google Scholar
Ertel SI, Clozel JP. Mibefradil (Ro 40-5967): the first selective T-type Ca2+ channel blocker. Expert Opin Investig Drugs. 1997;6:569–82.
Article
CAS
PubMed
Google Scholar
Jarvis MF, Scott VE, McGaraughty S, Chu KL, Xu J, Niforatos W, et al. A peripherally acting, selective T-type calcium channel blocker, ABT-639, effectively reduces nociceptive and neuropathic pain in rats. Biochem Pharmacol. 2014;89(4):536–44.
Article
CAS
PubMed
Google Scholar
Serra J, Duan WR, Locke C, Solà R, Liu W, Nothaft W. Effects of a T-type calcium channel blocker, ABT-639, on spontaneous activity in C-nociceptors in patients with painful diabetic neuropathy. Pain. 2015;156:2175–83.
Article
CAS
PubMed
Google Scholar
Ziegler D, Rachel Duan W, An G, Thomas JW, Nothaft W. A randomized double-blind, placebo-, and active-controlled study of T-type calcium channel blocker ABT-639 in patients with diabetic peripheral neuropathic pain. Pain. 2015;156(10):2013–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picard E, Carvalho FA, Agosti F, Bourinet E, Ardid D, Eschalier A, et al. Inhibition of Ca v 3.2 calcium channels: a new target for colonic hypersensitivity associated with low-grade inflammation. Br J Pharmacol. 2019;176:950–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furukawa T, Nukada T, Namiki Y, Miyashita Y, Hatsuno K, Ueno Y, et al. Five different profiles of dihydropyridines in blocking T-type Ca2+ channel subtypes (Cav3.1 (α1G), Cav3.2 (α1H), and Cav3.3 (α1I)) expressed in Xenopus oocytes. Eur J Pharmacol. 2009;613:100–7.
Article
CAS
PubMed
Google Scholar
Aygün Cevher H, Schaller D, Gandini MA, Kaplan O, Gambeta E, Zhang FX, et al. Discovery of Michael acceptor containing 1,4-dihydropyridines as first covalent inhibitors of L-/T-type calcium channels. Bioorg Chem. 2019;91: 103187.
Article
PubMed
CAS
Google Scholar
Phani Kumar P, Stotz SC, Paramashivappa R, Beedle AM, Zamponi GW, Srinivasa RA. Synthesis and evaluation of a new class of nifedipine analogs with T-type calcium channel blocking activity. Mol Pharmacol. 2002;61(3):649–58.
Article
PubMed
Google Scholar
Bladen C, Gündüz MG, Şimşek R, Şafak C, Zamponi GW. Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity. Pflugers Arch. 2014;466(7):1355–63.
Article
CAS
PubMed
Google Scholar
Bladen C, Gadotti VM, Gündüz MG, Berger ND, Şimşek R, Şafak C, et al. 1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain. Pflugers Arch. 2015;467:1237–47.
Article
CAS
PubMed
Google Scholar
Ross HR, Napier I, Connor M. Inhibition of recombinant human T-type calcium channels by Δ9-tetrahydrocannabinol and cannabidiol. J Biol Chem. 2008;283(23):16124–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gadotti VM, Huang S, Zamponi GW. The terpenes camphene and alpha-bisabolol inhibit inflammatory and neuropathic pain via Cav3.2 T-type calcium channels. Mol Brain. 2021;14:1.
Article
CAS
Google Scholar
Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J. 2001;20(24):7033–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbara G, Alloui A, Nargeot J, Lory P, Eschalier A, Bourinet E, et al. T-type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J Neurosci. 2009;29(42):13106–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross HR, Gilmore AJ, Connor M. Inhibition of human recombinant T-type calcium channels by the endocannabinoid N-arachidonoyl dopamine. Br J Pharmacol. 2009;156(5):740–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bladen C, Mirlohi S, Santiago M, Longworth M, Kassiou M, Banister S, et al. Modulation of human T-type calcium channels by synthetic cannabinoid receptor agonists in vitro. Neuropharmacology. 2021;187: 108478.
Article
CAS
PubMed
Google Scholar
You H, Gadotti VM, Petrov RR, Zamponi GW, Diaz P. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands. Mol Pain. 2011;7:89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gadotti VM, You H, Petrov RR, Berger ND, Diaz P, Zamponi GW. Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist. Mol Pain. 2013;9:32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger ND, Gadotti VM, Petrov RR, Chapman K, Diaz P, Zamponi GW. NMP-7 inhibits chronic inflammatory and neuropathic pain via block of Cav3.2T-type calcium channels and activation of CB2 receptors. Mol Pain. 2014;10:77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bladen C, McDaniel SW, Gadotti VM, Petrov RR, Berger ND, Diaz P, et al. Characterization of novel cannabinoid based T-type calcium channel blockers with analgesic effects. ACS Chem Neurosci. 2015;6(2):277–87.
Article
CAS
PubMed
Google Scholar
Shipe WD, Barrow JC, Yang ZQ, Lindsley CW, Yang FV, Schlegel KAS, et al. Design, synthesis, and evaluation of a novel 4-aminomethyl-4-fluoropiperidine as a T-type Ca2+ channel antagonist. J Med Chem. 2008;51(13):3692–5.
Article
CAS
PubMed
Google Scholar
Choe WJ, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, et al. TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol. 2011;80(5):900–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss N, Black SAG, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Archiv Eur J Physiol. 2013;465:1159–70.
Article
CAS
Google Scholar
Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, et al. Reversal of neuropathic pain in diabetes by targeting glycosylation of Cav3.2 T-type calcium channels. Diabetes. 2013;62:3828–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joksimovic SL, Evans JG, McIntire WE, Orestes P, Barrett PQ, Jevtovic-Todorovic V, et al. Glycosylation of CaV3.2 channels contributes to the hyperalgesia in peripheral neuropathy of type 1 diabetes. Front Cell Neurosci. 2020;14:605312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Wang P, Ma F, Zheng M, Liu G, Kume S, et al. Asparagine-linked glycosylation modifies voltage-dependent gating properties of Ca V 3.1-T-type Ca2+ channel. J Physiol Sci. 2019;69:335.
Article
CAS
PubMed
Google Scholar
Gomez K, Calderón-Rivera A, Sandoval A, González-Ramírez R, Vargas-Parada A, Ojeda-Alonso J, et al. Cdk5-dependent phosphorylation of CaV3.2 T-type channels: possible role in nerve ligation-induced neuropathic allodynia and the compound action potential in primary afferent C fibers. J Neurosci. 2020;40:283–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calderón-Rivera A, Sandoval A, González-Ramírez R, González-Billault C, Felix R. Regulation of neuronal Cav31 channels by cyclin-dependent kinase 5 (Cdk5). PLoS ONE. 2015;10:e0119134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–29.
Article
CAS
PubMed
Google Scholar
Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci. 2012;125(3):531–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gadotti VM, Caballero AG, Berger ND, Gladding CM, Chen L, Pfeifer TA, et al. Small organic molecule disruptors of Cav3.2—USP5 interactions reverse inflammatory and neuropathic pain. Mol Pain. 2015;11:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gadotti VM, Zamponi GW. Disrupting USP5/Cav3.2 interactions protects female mice from mechanical hypersensitivity during peripheral inflammation. Mol Brain. 2018;11:60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joksimovic SL, Joksimovic SM, Tesic V, García-Caballero A, Feseha S, Zamponi GW, et al. Selective inhibition of CaV3.2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain. Sci Signal. 2018;11:eaao4425.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tomita S, Sekiguchi F, Deguchi T, Miyazaki T, Ikeda Y, Tsubota M, et al. Critical role of Cav3.2 T-type calcium channels in the peripheral neuropathy induced by bortezomib, a proteasome-inhibiting chemotherapeutic agent, in mice. Toxicology. 2019;413:33–9.
Article
CAS
PubMed
Google Scholar
Garcia-Caballero A, Gadotti VM, Ali MY, Bladen C, Gambeta E, Van Humbeck J, et al. A synthetically accessible small-molecule inhibitor of USP5-Cav3.2 calcium channel interactions with analgesic properties. ACS Chem Neurosci. 2022;13(4):524–36.
Article
CAS
PubMed
Google Scholar
Garcia-Caballero A, Zhang FX, Chen L, M’Dahoma S, Huang J, Zamponi GW. SUMOylation regulates USP5-Cav32 calcium channel interactions. Mol Brain. 2019;12:73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stemkowski P, García-Caballero A, De Maria GV, M’Dahoma S, Huang S, Gertrud Black SA, et al. TRPV1 nociceptor activity initiates USP5/T-type channel-mediated plasticity. Cell Rep. 2016;17:2901–12.
Article
CAS
PubMed
Google Scholar
Lee M. Z944: a first in class T-type calcium channel modulator for the treatment of pain. J Peripher Nerv Syst. 2014;19:S11–2.
Article
PubMed
Google Scholar