Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67(4):821–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lory P, Mezghrani A. Calcium channelopathies in inherited neurological disorders: relevance to drug screening for acquired channel disorders. IDrugs. 2010;13(7):467–71.
CAS
PubMed
Google Scholar
Striessnig J. Voltage-gated Ca(2+)-channel α1-subunit de novo missense mutations: gain or loss of function—implications for potential therapies. Front Synaptic Neurosci. 2021;13: 634760.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and physiological implications of cooperative gating of clustered ion channels. Physiol Rev. 2022;102(3):1159–210.
Article
CAS
PubMed
Google Scholar
Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8): a003947.
Article
PubMed
PubMed Central
Google Scholar
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82(1):24–45.
Article
CAS
PubMed
Google Scholar
Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron. 1992;9(6):1099–115.
Article
CAS
PubMed
Google Scholar
Zhang G, Liu JB, Yuan HL, Chen SY, Singer JH, Ke JB. Multiple calcium channel types with unique expression patterns mediate retinal signaling at bipolar cell ribbon synapses. J Neurosci. 2022;42(34):6487–505.
Article
CAS
PubMed
Google Scholar
Pangrsic T, Singer JH, Koschak A. Voltage-gated calcium channels: key players in sensory coding in the retina and the inner ear. Physiol Rev. 2018;98(4):2063–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, et al. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol. 1993;123(4):949–62.
Article
CAS
PubMed
Google Scholar
Catterall WA, Wisedchaisri G, Zheng N. The conformational cycle of a prototypical voltage-gated sodium channel. Nat Chem Biol. 2020;16(12):1314–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buraei Z, Yang J. The ß subunit of voltage-gated Ca2+ channels. Physiol Rev. 2010;90(4):1461–506.
Article
CAS
PubMed
Google Scholar
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol. 2016;594(19):5369–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, et al. The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci U S A. 2010;107(4):1654–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadurin I, Ferron L, Rothwell SW, Meyer JO, Douglas LR, Bauer CS, et al. Proteolytic maturation of α. Elife. 2016;5:e21143.
Article
PubMed
PubMed Central
Google Scholar
Lipscombe D, Lopez-Soto EJ. Epigenetic control of ion channel expression and cell-specific splicing in nociceptors: chronic pain mechanisms and potential therapeutic targets. Channels (Austin). 2021;15(1):156–64.
Article
PubMed
Google Scholar
Bunda A, LaCarubba B, Bertolino M, Akiki M, Bath K, Lopez-Soto J, et al. Cacna1b alternative splicing impacts excitatory neurotransmission and is linked to behavioral responses to aversive stimuli. Mol Brain. 2019;12(1):81.
Article
PubMed
PubMed Central
Google Scholar
Gao S, Yan N. Structural basis of the modulation of the voltage-gated calcium ion channel Ca. Angew Chem Int Ed Engl. 2021;60(6):3131–7.
Article
CAS
PubMed
Google Scholar
Dong Y, Gao Y, Xu S, Wang Y, Yu Z, Li Y, et al. Closed-state inactivation and pore-blocker modulation mechanisms of human Ca. Cell Rep. 2021;37(5): 109931.
Article
CAS
PubMed
Google Scholar
Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, et al. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution. Nature. 2016;537(7619):191–6.
Article
CAS
PubMed
Google Scholar
Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, et al. Cryo-EM structures of apo and antagonist-bound human Ca. Nature. 2019;576(7787):492–7.
Article
CAS
PubMed
Google Scholar
Wheeler DB, Sather WA, Randall A, Tsien RW. Distinctive properties of a neuronal calcium channel and its contribution to excitatory synaptic transmission in the central nervous system. Adv Second Messenger Phosphoprotein Res. 1994;29:155–71.
Article
CAS
PubMed
Google Scholar
Ishikawa T, Kaneko M, Shin HS, Takahashi T. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol. 2005;568(Pt 1):199–209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams ME, Myers RA, Imperial JS, Olivera BM. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms. Biochemistry. 1993;32(47):12566–70.
Article
CAS
PubMed
Google Scholar
Olivera BM, Imperial JS, Cruz LJ, Bindokas VP, Venema VJ, Adams ME. Calcium channel-targeted polypeptide toxins. Ann N Y Acad Sci. 1991;635:114–22.
Article
CAS
PubMed
Google Scholar
Wang YX, Gao D, Pettus M, Phillips C, Bowersox SS. Interactions of intrathecally administered ziconotide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociception in rats. Pain. 2000;84(2–3):271–81.
Article
CAS
PubMed
Google Scholar
Scott DA, Wright CE, Angus JA. Actions of intrathecal omega-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur J Pharmacol. 2002;451(3):279–86.
Article
CAS
PubMed
Google Scholar
McGivern JG. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat. 2007;3(1):69–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, et al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. Embo j. 2001;20(10):2349–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, et al. Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci. 2001;18(2):235–45.
Article
CAS
PubMed
Google Scholar
Hatakeyama S, Wakamori M, Ino M, Miyamoto N, Takahashi E, Yoshinaga T, et al. Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca(2+) channels. NeuroReport. 2001;12(11):2423–7.
Article
CAS
PubMed
Google Scholar
Beuckmann CT, Sinton CM, Miyamoto N, Ino M, Yanagisawa M. N-type calcium channel alpha1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences. J Neurosci. 2003;23(17):6793–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim C, Jeon D, Kim YH, Lee CJ, Kim H, Shin HS. Deletion of N-type Ca(2+) channel Ca(v)2.2 results in hyperaggressive behaviors in mice. J Biol Chem. 2009;284(5):2738–45.
Article
CAS
PubMed
Google Scholar
Newton PM, Orr CJ, Wallace MJ, Kim C, Shin HS, Messing RO. Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J Neurosci. 2004;24(44):9862–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newton PM, Zeng L, Wang V, Connolly J, Wallace MJ, Kim C, et al. A blocker of N- and T-type voltage-gated calcium channels attenuates ethanol-induced intoxication, place preference, self-administration, and reinstatement. J Neurosci. 2008;28(45):11712–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newton PM, Messing RO. The N-type calcium channel is a novel target for treating alcohol use disorders. Channels (Austin). 2009;3(2):77–81.
Article
CAS
PubMed
Google Scholar
Belardetti F. Evolving therapeutic indications for N-type calcium channel blockers: from chronic pain to alcohol abuse. Future Med Chem. 2010;2(5):791–802.
Article
CAS
PubMed
Google Scholar
Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem. 2009;284(45):31375–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL, et al. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nat Med. 2011;17(7):822–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchta WC, Moutal A, Hines B, Garcia-Keller C, Smith ACW, Kalivas P, et al. Dynamic CRMP2 regulation of CaV2.2 in the prefrontal cortex contributes to the reinstatement of cocaine seeking. Mol Neurobiol. 2020;57(1):346–57.
Article
CAS
PubMed
Google Scholar
Schuwald AM, Nöldner M, Wilmes T, Klugbauer N, Leuner K, Müller WE. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels. PLoS ONE. 2013;8(4): e59998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamani M, Budde T, Bozorgi H. Intracerebroventricular administration of N-type calcium channel blocker ziconotide displays anticonvulsant, anxiolytic, and sedative effects in rats: a preclinical and pilot study. Epilepsy Behav. 2020;111: 107251.
Article
PubMed
Google Scholar
Blazon M, LaCarubba B, Bunda A, Czepiel N, Mallat S, Londrigan L, et al. N-type calcium channels control GABAergic transmission in brain areas related to fear and anxiety. OBM Neurobiol. 2021;5(1):10.21926/obm.neurobiol.2101083.
Jeon D, Kim C, Yang YM, Rhim H, Yim E, Oh U, et al. Impaired long-term memory and long-term potentiation in N-type Ca2+ channel-deficient mice. Genes Brain Behav. 2007;6(4):375–88.
Article
CAS
PubMed
Google Scholar
Murakami M, Nakagawasai O, Yanai K, Nunoki K, Tan-No K, Tadano T, et al. Modified behavioral characteristics following ablation of the voltage-dependent calcium channel beta3 subunit. Brain Res. 2007;1160:102–12.
Article
CAS
PubMed
Google Scholar
Zhou Y NK, Li W, Takahashi E. Role of Cav2.2-mediated signaling in depressive behaviors. Integr Mol Med. 2015. https://doi.org/10.15761/IMM.1000170.
Tedford HW, Zamponi GW. Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev. 2006;58(4):837–62.
Article
CAS
PubMed
Google Scholar
Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, et al. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994;341(1):33–8.
Article
CAS
PubMed
Google Scholar
Snyder SH, Pasternak GW. Historical review: opioid receptors. Trends Pharmacol Sci. 2003;24(4):198–205.
Article
CAS
PubMed
Google Scholar
Stein C. Opioid receptors. Annu Rev Med. 2016;67:433–51.
Article
CAS
PubMed
Google Scholar
Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377(6549):532–5.
Article
CAS
PubMed
Google Scholar
Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Orphanin FQ, et al. A neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995;270(5237):792–4.
Article
CAS
PubMed
Google Scholar
Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature. 2012;485(7398):395–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toll L, Bruchas MR, Calo G, Cox BM, Zaveri NT. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev. 2016;68(2):419–57.
Article
PubMed
PubMed Central
Google Scholar
New DC, Wong YH. The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neurosignals. 2002;11(4):197–212.
Article
CAS
PubMed
Google Scholar
Liao YY, Trapella C, Chiou LC. 1-Benzyl-N-[3-[spiroisobenzofuran-1(3H),4′-piperidin-1-yl]propyl]pyrrolidine-2-carboxamide (Compound 24) antagonizes NOP receptor-mediated potassium channel activation in rat periaqueductal gray slices. Eur J Pharmacol. 2009;606(1–3):84–9.
Article
CAS
PubMed
Google Scholar
Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature. 1996;380(6571):258–62.
Article
CAS
PubMed
Google Scholar
Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT. G protein-gated inhibitory module of N-type (ca(v)2.2) ca2+ channels. Neuron. 2005;46(6):891–904.
Article
CAS
PubMed
Google Scholar
Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP. Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature. 1997;385(6615):442–6.
Article
CAS
PubMed
Google Scholar
Bourinet E, Zamponi GW, Stea A, Soong TW, Lewis BA, Jones LP, et al. The alpha 1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. J Neurosci. 1996;16(16):4983–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnot MI, Stotz SC, Jarvis SE, Zamponi GW. Differential modulation of N-type 1B and P/Q-type 1A calcium channels by different G protein subunit isoforms. J Physiol. 2000;527 Pt 2(2(Pt 2)):203–12.
Article
CAS
PubMed
Google Scholar
Agler HL, Evans J, Colecraft HM, Yue DT. Custom distinctions in the interaction of G-protein beta subunits with N-type (CaV2.2) versus P/Q-type (CaV2.1) calcium channels. J Gen Physiol. 2003;121(6):495–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bean BP. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature. 1989;340(6229):153–6.
Article
CAS
PubMed
Google Scholar
Brody DL, Patil PG, Mulle JG, Snutch TP, Yue DT. Bursts of action potential waveforms relieve G-protein inhibition of recombinant P/Q-type Ca2+ channels in HEK 293 cells. J Physiol. 1997;499(Pt 3):637–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamponi GW, Snutch TP. Modulation of voltage-dependent calcium channels by G proteins. Curr Opin Neurobiol. 1998;8(3):351–6.
Article
CAS
PubMed
Google Scholar
Meir A, Bell DC, Stephens GJ, Page KM, Dolphin AC. Calcium channel beta subunit promotes voltage-dependent modulation of alpha 1 B by G beta gamma. Biophys J. 2000;79(2):731–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng ZP, Arnot MI, Doering CJ, Zamponi GW. Calcium channel beta subunits differentially regulate the inhibition of N-type channels by individual Gbeta isoforms. J Biol Chem. 2001;276(48):45051–8.
Article
CAS
PubMed
Google Scholar
Meir A, Dolphin AC. Kinetics and Gbetagamma modulation of Ca(v)2.2 channels with different auxiliary beta subunits. Pflugers Arch. 2002;444(1–2):263–75.
Article
CAS
PubMed
Google Scholar
Jeong SW, Ikeda SR. Effect of G protein heterotrimer composition on coupling of neurotransmitter receptors to N-type Ca(2+) channel modulation in sympathetic neurons. Proc Natl Acad Sci USA. 2000;97(2):907–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C, et al. Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci. 2004;7(2):118–25.
Article
CAS
PubMed
Google Scholar
Knoflach F, Reinscheid RK, Civelli O, Kemp JA. Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci. 1996;16(21):6657–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsson KP, Olsen UB, Hansen AJ. Nociceptin is a potent inhibitor of N-type Ca(2+) channels in rat sympathetic ganglion neurons. Neurosci Lett. 2000;296(2–3):121–4.
Article
CAS
PubMed
Google Scholar
Borgland SL, Connor M, Christie MJ. Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. J Physiol. 2001;536(Pt 1):35–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Connor M, Yeo A, Henderson G. The effect of nociceptin on Ca2+ channel current and intracellular Ca2+ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol. 1996;118(2):205–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chin JH, Harris K, MacTavish D, Jhamandas JH. Nociceptin/orphanin FQ modulation of ionic conductances in rat basal forebrain neurons. J Pharmacol Exp Ther. 2002;303(1):188–95.
Article
CAS
PubMed
Google Scholar
Seseña E, Soto E, Bueno J, Vega R. Nociceptin/orphanin FQ peptide receptor mediates inhibition of N-type calcium currents in vestibular afferent neurons of the rat. J Neurophysiol. 2020;124(6):1605–14.
Article
PubMed
Google Scholar
Ruiz-Velasco V, Puhl HL, Fuller BC, Sumner AD. Modulation of Ca2+ channels by opioid receptor-like 1 receptors natively expressed in rat stellate ganglion neurons innervating cardiac muscle. J Pharmacol Exp Ther. 2005;314(3):987–94.
Article
CAS
PubMed
Google Scholar
Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, et al. ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci. 2006;9(1):31–40.
Article
CAS
PubMed
Google Scholar
Murali SS, Napier IA, Rycroft BK, Christie MJ. Opioid-related (ORL1) receptors are enriched in a subpopulation of sensory neurons and prolonged activation produces no functional loss of surface N-type calcium channels. J Physiol. 2012;590(7).
Evans RM, You H, Hameed S, Altier C, Mezghrani A, Bourinet E, et al. Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation. J Biol Chem. 2010;285(2):1032–40.
Article
CAS
PubMed
Google Scholar
Zaveri NT. Nociceptin opioid receptor (NOP) as a therapeutic target: progress in translation from preclinical research to clinical utility. J Med Chem. 2016;59(15):7011–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witkin JM, Rorick-Kehn LM, Benvenga MJ, Adams BL, Gleason SD, Knitowski KM, et al. Preclinical findings predicting efficacy and side-effect profile of LY2940094, an antagonist of nociceptin receptors. Pharmacol Res Perspect. 2016;4(6): e00275.
Article
PubMed
PubMed Central
Google Scholar
Post A, Smart TS, Krikke-Workel J, Dawson GR, Harmer CJ, Browning M, et al. A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacology. 2016;41(7):1803–12.
Article
CAS
PubMed
Google Scholar
Lambert DG. Mixed mu-nociceptin/orphanin FQ opioid receptor agonists and the search for the analgesic holy grail. Br J Anaesth. 2019;122(6):e95–7.
Article
PubMed
Google Scholar
Ding H, Trapella C, Kiguchi N, Hsu FC, Caló G, Ko MC. Functional profile of systemic and intrathecal cebranopadol in nonhuman primates. Anesthesiology. 135: Copyright© 2021, the American Society of Anesthesiologists. All Rights Reserved.; 2021. p. 482–93.
Ozawa A, Brunori G, Mercatelli D, Wu J, Cippitelli A, Zou B, et al. Knock-in mice with NOP-eGFP receptors identify receptor cellular and regional localization. J Neurosci. 2015;35(33):11682–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, et al. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol. 1999;412(4):563–605.
Article
CAS
PubMed
Google Scholar
Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol. 1999;406(4):503–47.
Article
CAS
PubMed
Google Scholar
Ozawa A, Brunori G, Cippitelli A, Toll N, Schoch J, Kieffer BL, et al. Analysis of the distribution of spinal NOP receptors in a chronic pain model using NOP-eGFP knock-in mice. Br J Pharmacol. 2018;175(13):2662–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia Y, Linden DR, Serie JR, Seybold VS. Nociceptin/orphanin FQ binding increases in superficial laminae of the rat spinal cord during persistent peripheral inflammation. Neurosci Lett. 1998;250(1):21–4.
Article
CAS
PubMed
Google Scholar
Briscini L, Corradini L, Ongini E, Bertorelli R. Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol. 2002;447(1):59–65.
Article
CAS
PubMed
Google Scholar
Mika J, Schäfer MK, Obara I, Weihe E, Przewlocka B. Morphine and endomorphin-1 differently influence pronociceptin/orphanin FQ system in neuropathic rats. Pharmacol Biochem Behav. 2004;78(1):171–8.
Article
CAS
PubMed
Google Scholar
Ko MH, Kim YH, Woo RS, Kim KW. Quantitative analysis of nociceptin in blood of patients with acute and chronic pain. NeuroReport. 2002;13(13):1631–3.
Article
CAS
PubMed
Google Scholar
Courteix C, Coudoré-Civiale MA, Privat AM, Pélissier T, Eschalier A, Fialip J. Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain. 2004;110(1–2):236–45.
Article
CAS
PubMed
Google Scholar
Yamamoto T, Nozaki-Taguchi N, Kimura S. Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, in the rat formalin test. Neuroscience. 1997;81(1):249–54.
Article
CAS
PubMed
Google Scholar
Wu Q, Liu L. ORL(1) activation mediates a novel ORL(1) receptor agonist SCH221510 analgesia in neuropathic pain in rats. J Mol Neurosci. 2018;66(1):10–6.
Article
CAS
PubMed
Google Scholar
Chen Y, Sommer C. Activation of the nociceptin opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: involvement of inflammatory mediators. J Neurosci Res. 2007;85(7):1478–88.
Article
CAS
PubMed
Google Scholar
Reiss D, Wichmann J, Tekeshima H, Kieffer BL, Ouagazzal AM. Effects of nociceptin/orphanin FQ receptor (NOP) agonist, Ro64-6198, on reactivity to acute pain in mice: comparison to morphine. Eur J Pharmacol. 2008;579(1–3):141–8.
Article
CAS
PubMed
Google Scholar
Hayashi S, Nakata E, Morita A, Mizuno K, Yamamura K, Kato A, et al. Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol, systemically potent novel non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the treatment of neuropathic pain: design, synthesis, and structure-activity relationships. Bioorg Med Chem. 2010;18(21):7675–99.
Article
CAS
PubMed
Google Scholar
El Daibani A, Che T. Spotlight on nociceptin/orphanin FQ receptor in the treatment of pain. Molecules. 2022;27(3):595.
Ko MC, Wei H, Woods JH, Kennedy RT. Effects of intrathecally administered nociceptin/orphanin FQ in monkeys: behavioral and mass spectrometric studies. J Pharmacol Exp Ther. 2006;318(3):1257–64.
Article
CAS
PubMed
Google Scholar
Ko MC, Naughton NN. Antinociceptive effects of nociceptin/orphanin FQ administered intrathecally in monkeys. J Pain. 2009;10(5):509–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko MC, Woods JH, Fantegrossi WE, Galuska CM, Wichmann J, Prinssen EP. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology. 2009;34(9):2088–96.
Article
CAS
PubMed
Google Scholar
Schröder W, Lambert DG, Ko MC, Koch T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol. 2014;171(16):3777–800.
Article
PubMed
PubMed Central
Google Scholar
Kiguchi N, Ko MC. Effects of NOP-related ligands in nonhuman primates. Handb Exp Pharmacol. 2019;254:323–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettersson LM, Sundler F, Danielsen N. Expression of orphanin FQ/nociceptin and its receptor in rat peripheral ganglia and spinal cord. Brain Res. 2002;945(2):266–75.
Article
CAS
PubMed
Google Scholar
Ahmadi S, Liebel JT, Zeilhofer HU. The role of the ORL1 receptor in the modulation of spinal neurotransmission by nociceptin/orphanin FQ and nocistatin. Eur J Pharmacol. 2001;412(1):39–44.
Article
CAS
PubMed
Google Scholar
Zeilhofer HU, Selbach UM, Guhring H, Erb K, Ahmadi S. Selective suppression of inhibitory synaptic transmission by nocistatin in the rat spinal cord dorsal horn. J Neurosci. 2000;20(13):4922–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo C, Kumamoto E, Furue H, Chen J, Yoshimura M. Nociceptin inhibits excitatory but not inhibitory transmission to substantia gelatinosa neurones of adult rat spinal cord. Neuroscience. 2002;109(2):349–58.
Article
CAS
PubMed
Google Scholar
Nishi M, Houtani T, Noda Y, Mamiya T, Sato K, Doi T, et al. Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphaninFQ receptor. Embo J. 1997;16(8):1858–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourinet E, Soong TW, Stea A, Snutch TP. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci USA. 1996;93(4):1486–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ueda H, Yamaguchi T, Tokuyama S, Inoue M, Nishi M, Takeshima H. Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci Lett. 1997;237(2–3):136–8.
Article
CAS
PubMed
Google Scholar
Ueda H, Inoue M, Takeshima H, Iwasawa Y. Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. J Neurosci. 2000;20(20):7640–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lutfy K, Hossain SM, Khaliq I, Maidment NT. Orphanin FQ/nociceptin attenuates the development of morphine tolerance in rats. Br J Pharmacol. 2001;134(3):529–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy NP, Ly HT, Maidment NT. Intracerebroventricular orphanin FQ/nociceptin suppresses dopamine release in the nucleus accumbens of anaesthetized rats. Neuroscience. 1996;75(1):1–4.
Article
CAS
PubMed
Google Scholar
Zaratin PF, Petrone G, Sbacchi M, Garnier M, Fossati C, Petrillo P, et al. Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). J Pharmacol Exp Ther. 2004;308(2):454–61.
Article
CAS
PubMed
Google Scholar
Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK, Grandy DK. Orphanin FQ is a functional anti-opioid peptide. Neuroscience. 1996;75(2):333–7.
Article
CAS
PubMed
Google Scholar
Mogil JS, Grisel JE, Zhangs G, Belknap JK, Grandy DK. Functional antagonism of mu-, delta- and kappa-opioid antinociception by orphanin FQ. Neurosci Lett. 1996;214(2–3):131–4.
Article
CAS
PubMed
Google Scholar
Gouardères C, Tafani JA, Meunier JC, Jhamandas K, Zajac JM. Nociceptin receptors in the rat spinal cord during morphine tolerance. Brain Res. 1999;838(1–2):85–94.
Article
PubMed
Google Scholar
Ray SB, Gupta YK, Wadhwa S. Expression of opioid receptor-like 1 (ORL1) & mu opioid receptors in the spinal cord of morphine tolerant mice. Indian J Med Res. 2005;121(3):194–202.
CAS
PubMed
Google Scholar
Khroyan TV, Zaveri NT, Polgar WE, Orduna J, Olsen C, Jiang F, et al. SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice. J Pharmacol Exp Ther. 2007;320(2):934–43.
Article
CAS
PubMed
Google Scholar
Bird MF, McDonald J, Horley B, O’Doherty JP, Fraser B, Gibson CL, et al. MOP and NOP receptor interaction: studies with a dual expression system and bivalent peptide ligands. PLoS ONE. 2022;17(1): e0260880.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sukhtankar DD, Zaveri NT, Husbands SM, Ko MC. Effects of spinally administered bifunctional nociceptin/orphanin FQ peptide receptor/μ-opioid receptor ligands in mouse models of neuropathic and inflammatory pain. J Pharmacol Exp Ther. 2013;346(1):11–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizzi A, Nazzaro C, Marzola GG, Zucchini S, Trapella C, Guerrini R, et al. Endogenous nociceptin/orphanin FQ signalling produces opposite spinal antinociceptive and supraspinal pronociceptive effects in the mouse formalin test: pharmacological and genetic evidences. Pain. 2006;124(1–2):100–8.
Article
CAS
PubMed
Google Scholar
Rizzi A, Marzola G, Bigoni R, Guerrini R, Salvadori S, Mogil JS, et al. Endogenous nociceptin signaling and stress-induced analgesia. NeuroReport. 2001;12(14):3009–13.
Article
CAS
PubMed
Google Scholar
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, et al. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest. 2008;118(7):2471–81.
CAS
PubMed
PubMed Central
Google Scholar
Gerashchenko D, Horvath TL, Xie XS. Direct inhibition of hypocretin/orexin neurons in the lateral hypothalamus by nociceptin/orphanin FQ blocks stress-induced analgesia in rats. Neuropharmacology. 2011;60(4):543–9.
Article
CAS
PubMed
Google Scholar
Zhang Y, Gandhi PR, Standifer KM. Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol Pain. 2012;8:76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Simpson-Durand CD, Standifer KM. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. Br J Pharmacol. 2015;172(2):571–82.
Article
CAS
PubMed
Google Scholar
Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169–91.
Article
PubMed
Google Scholar
Park JY, Chae S, Kim CS, Kim YJ, Yi HJ, Han E, et al. Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists. Korean J Physiol Pharmacol. 2019;23(6):427–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
LM S, I L. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169-91.
Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16(6):317–31.
Article
CAS
PubMed
Google Scholar
Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18(10):1394–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;11:165–75.
PubMed
PubMed Central
Google Scholar
Kaur S, Singh R. Role of different neurotransmitters in anxiety: a systematic review. Int J Pharmaceut Sci Res. 2017;8(2):411–21.
CAS
Google Scholar
Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11(1):2221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Möhler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012;62(1):42–53.
Article
PubMed
Google Scholar
Donica CL, Awwad HO, Thakker DR, Standifer KM. Cellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ. Mol Pharmacol. 2013;83(5):907–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meis S, Pape HC. Control of glutamate and GABA release by nociceptin/orphanin FQ in the rat lateral amygdala. J Physiol. 2001;532(Pt 3):701–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenck F, Moreau JL, Martin JR, Kilpatrick GJ, Reinscheid RK, Monsma FJ Jr, et al. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci USA. 1997;94(26):14854–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirao A, Imai A, Sugie Y, Tamura T, Shimokawa H, Toide K. Pharmacological properties of a novel nociceptin/orphanin FQ receptor agonist, 2-(3,5-dimethylpiperazin-1-yl)-1-[1-(1-methylcyclooctyl)piperidin-4-yl]-1H-benzimidazole, with anxiolytic potential. Eur J Pharmacol. 2008;579(1–3):189–95.
Article
CAS
PubMed
Google Scholar
Varty GB, Lu SX, Morgan CA, Cohen-Williams ME, Hodgson RA, Smith-Torhan A, et al. The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J Pharmacol Exp Ther. 2008;326(2):672–82.
Article
CAS
PubMed
Google Scholar
Raffaele M, Kovacovicova K, Biagini T, Lo Re O, Frohlich J, Giallongo S, et al. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. Geroscience. 2022;44(1):463–83.
Article
CAS
PubMed
Google Scholar
Gavioli EC, Holanda VAD, Ruzza C. NOP ligands for the treatment of anxiety and mood disorders. Handb Exp Pharmacol. 2019;254:233–57.
Article
CAS
PubMed
Google Scholar
Fernandez F, Misilmeri MA, Felger JC, Devine DP. Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology. 2004;29(1):59–71.
Article
CAS
PubMed
Google Scholar
Green MK, Barbieri EV, Brown BD, Chen KW, Devine DP. Roles of the bed nucleus of stria terminalis and of the amygdala in N/OFQ-mediated anxiety and HPA axis activation. Neuropeptides. 2007;41(6):399–410.
Article
CAS
PubMed
Google Scholar
Cullen CL, Burne TH, Lavidis NA, Moritz KM. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring. PLoS ONE. 2013;8(1): e54924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou R, Wang S, Zhu X. Prenatal ethanol exposure attenuates GABAergic inhibition in basolateral amygdala leading to neuronal hyperexcitability and anxiety-like behavior of adult rat offspring. Neuroscience. 2010;170(3):749–57.
Article
CAS
PubMed
Google Scholar
Baculis BC, Diaz MR, Valenzuela CF. Third trimester-equivalent ethanol exposure increases anxiety-like behavior and glutamatergic transmission in the basolateral amygdala. Pharmacol Biochem Behav. 2015;137:78–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wille-Bille A, Miranda-Morales RS, Pucci M, Bellia F, D’Addario C, Pautassi RM. Prenatal ethanol induces an anxiety phenotype and alters expression of dynorphin & nociceptin/orphanin FQ genes. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:77–88.
Article
CAS
PubMed
Google Scholar
Aghaie CI, Hausknecht KA, Wang R, Dezfuli PH, Haj-Dahmane S, Kane CJM, et al. Prenatal ethanol exposure and postnatal environmental intervention alter dopaminergic neuron and microglia morphology in the ventral tegmental area during adulthood. Alcohol Clin Exp Res. 2020;44(2):435–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caputi FF, Stopponi S, Rullo L, Palmisano M, Ubaldi M, Candeletti S, et al. Dysregulation of nociceptin/orphanin FQ and dynorphin systems in the extended amygdala of alcohol preferring marchigian sardinian (msP) Rats. Int J Mol Sci. 2021;22(5):2448.
Takahashi E, Niimi K. Modulators of voltage-dependent calcium channels for the treatment of nervous system diseases. Recent Pat CNS Drug Discov. 2009;4(2):96–111.
Article
CAS
PubMed
Google Scholar
Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov. 2016;15(1):19–34.
Article
CAS
PubMed
Google Scholar
Shinnick-Gallagher P, McKernan MG, Xie J, Zinebi F. L-type voltage-gated calcium channels are involved in the in vivo and in vitro expression of fear conditioning. Ann N Y Acad Sci. 2003;985:135–49.
Article
CAS
PubMed
Google Scholar
Babaev O, PilettiChatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry. Exp Mol Med. 2018;50(4):1–16.
Article
CAS
PubMed
Google Scholar
Schroeder BW, Shinnick-Gallagher P. Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala. Eur J Neurosci. 2004;20(2):549–56.
Article
PubMed
Google Scholar
Steimer T. Animal models of anxiety disorders in rats and mice: some conceptual issues. Dialogues Clin Neurosci. 2011;13(4):495–506.
Article
PubMed
PubMed Central
Google Scholar
Indovina I, Robbins TW, Núñez-Elizalde AO, Dunn BD, Bishop SJ. Fear-conditioning mechanisms associated with trait vulnerability to anxiety in humans. Neuron. 2011;69(3):563–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherin JE, Nemeroff CB. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci. 2011;13(3):263–78.
Article
PubMed
PubMed Central
Google Scholar
Al Yacoub ON, Awwad HO, Zhang Y, Standifer KM. Therapeutic potential of nociceptin/orphanin FQ peptide (NOP) receptor modulators for treatment of traumatic brain injury, traumatic stress, and their co-morbidities. Pharmacol Ther. 2022;231: 107982.
Article
CAS
PubMed
Google Scholar
Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, et al. Role of nociceptin/orphanin FQ-NOP receptor system in the regulation of stress-related disorders. Int J Mol Sci. 2021;22(23):12956.
Bauer EP, Schafe GE, LeDoux JE. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci. 2002;22(12):5239–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Busquet P, Hetzenauer A, Sinnegger-Brauns MJ, Striessnig J, Singewald N. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear. Learn Mem. 2008;15(5):378–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis SE, Bauer EP. L-type voltage-gated calcium channels in the basolateral amygdala are necessary for fear extinction. J Neurosci. 2012;32(39):13582–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Temme SJ, Murphy GG. The L-type voltage-gated calcium channel CaV1.2 mediates fear extinction and modulates synaptic tone in the lateral amygdala. Learn Memory (Cold Spring Harbor, NY). 2017;24(11):580–8.
Marks WN, Zabder NK, Snutch TP, Howland JG. T-type calcium channels regulate the acquisition and recall of conditioned fear in male, Wistar rats. Behav Brain Res. 2020;393: 112747.
Article
CAS
PubMed
Google Scholar
Moon AL, Brydges NM, Wilkinson LS, Hall J, Thomas KL. Cacna1c hemizygosity results in aberrant fear conditioning to neutral stimuli. Schizophr Bull. 2020;46(5):1231–8.
Popik B, Amorim FE, Amaral OB, De Oliveira Alvares L. Shifting from fear to safety through deconditioning-update. Elife. 2020;9:e51207.
Sofuoglu M, Rosenheck R, Petrakis I. Pharmacological treatment of comorbid PTSD and substance use disorder: recent progress. Addict Behav. 2014;39(2):428–33.
Article
PubMed
Google Scholar
Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24.
Article
PubMed
PubMed Central
Google Scholar
Gardner EL, Ashby CR Jr. Heterogeneity of the mesotelencephalic dopamine fibers: physiology and pharmacology. Neurosci Biobehav Rev. 2000;24(1):115–8.
Article
CAS
PubMed
Google Scholar
Kallupi M, Varodayan FP, Oleata CS, Correia D, Luu G, Roberto M. Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats. Neuropsychopharmacology. 2014;39(5):1081–92.
Article
CAS
PubMed
Google Scholar
Roberto M, Siggins GR. Nociceptin/orphanin FQ presynaptically decreases GABAergic transmission and blocks the ethanol-induced increase of GABA release in central amygdala. Proc Natl Acad Sci USA. 2006;103(25):9715–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy NP, Maidment NT. Orphanin FQ/nociceptin modulation of mesolimbic dopamine transmission determined by microdialysis. J Neurochem. 1999;73(1):179–86.
Article
CAS
PubMed
Google Scholar
Zheng F, Grandy DK, Johnson SW. Actions of orphanin FQ/nociceptin on rat ventral tegmental area neurons in vitro. Br J Pharmacol. 2002;136(7):1065–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domi A, Lunerti V, Petrella M, Domi E, Borruto AM, Ubaldi M, et al. Genetic deletion or pharmacological blockade of nociceptin/orphanin FQ receptors in the ventral tegmental area attenuates nicotine-motivated behaviour. Br J Pharmacol. 2022;179(11):2647–58.
Article
CAS
PubMed
Google Scholar
Ciccocioppo R, Economidou D, Fedeli A, Angeletti S, Weiss F, Heilig M, et al. Attenuation of ethanol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats. Psychopharmacology. 2004;172(2):170–8.
Article
CAS
PubMed
Google Scholar
Borruto AM, Fotio Y, Stopponi S, Petrella M, De Carlo S, Domi A, et al. NOP receptor antagonism attenuates reinstatement of alcohol-seeking through modulation of the mesolimbic circuitry in male and female alcohol-preferring rats. Neuropsychopharmacology. 2021;46(12):2121–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borruto AM, Fotio Y, Stopponi S, Brunori G, Petrella M, Caputi FF, et al. NOP receptor antagonism reduces alcohol drinking in male and female rats through mechanisms involving the central amygdala and ventral tegmental area. Br J Pharmacol. 2020;177(7):1525–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunori G, Weger M, Schoch J, Targowska-Duda K, Barnes M, Borruto AM, et al. NOP receptor antagonists decrease alcohol drinking in the dark in C57BL/6J mice. Alcohol Clin Exp Res. 2019;43(10):2167–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rorick-Kehn LM, Ciccocioppo R, Wong CJ, Witkin JM, Martinez-Grau MA, Stopponi S, et al. A novel, orally bioavailable nociceptin receptor antagonist, LY2940094, reduces ethanol self-administration and ethanol seeking in animal models. Alcohol Clin Exp Res. 2016;40(5):945–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kallupi M, Scuppa G, de Guglielmo G, Calò G, Weiss F, Statnick MA, et al. Genetic deletion of the nociceptin/orphanin FQ receptor in the rat confers resilience to the development of drug addiction. Neuropsychopharmacology. 2017;42(3):695–706.
Article
CAS
PubMed
Google Scholar
Economidou D, Hansson AC, Weiss F, Terasmaa A, Sommer WH, Cippitelli A, et al. Dysregulation of nociceptin/orphanin FQ activity in the amygdala is linked to excessive alcohol drinking in the rat. Biol Psychiatry. 2008;64(3):211–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Guglielmo G, Martin-Fardon R, Teshima K, Ciccocioppo R, Weiss F. MT-7716, a potent NOP receptor agonist, preferentially reduces ethanol seeking and reinforcement in post-dependent rats. Addict Biol. 2015;20(4):643–51.
Article
PubMed
Google Scholar
Li H, Scuppa G, Shen Q, Masi A, Nasuti C, Cannella N, et al. NOP receptor agonist Ro 64–6198 decreases escalation of cocaine self-administration in rats genetically selected for alcohol preference. Front Psychiatry. 2019;10:176.
Article
PubMed
PubMed Central
Google Scholar
Cippitelli A, Barnes M, Zaveri NT, Toll L. Potent and selective NOP receptor activation reduces cocaine self-administration in rats by lowering hedonic set point. Addict Biol. 2020;25(6): e12844.
Article
CAS
PubMed
Google Scholar
Baliño P, Pastor R, Aragon CM. Participation of L-type calcium channels in ethanol-induced behavioral stimulation and motor incoordination: effects of diltiazem and verapamil. Behav Brain Res. 2010;209(2):196–204.
Article
PubMed
Google Scholar
Uhrig S, Vandael D, Marcantoni A, Dedic N, Bilbao A, Vogt MA, et al. Differential roles for L-type calcium channel subtypes in alcohol dependence. Neuropsychopharmacology. 2017;42(5):1058–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez-Rivera A, Hao J, Tropea TF, Giordano TP, Kosovsky M, Rice RC, et al. Enhancing VTA Ca(v)1.3 L-type Ca(2+) channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens. Mol Psychiatry. 2017;22(12):1735–45.
Article
PubMed
PubMed Central
Google Scholar
Burgdorf CE, Schierberl KC, Lee AS, Fischer DK, Van Kempen TA, Mudragel V, et al. Extinction of contextual cocaine memories requires Cav1.2 within D1R-expressing cells and recruits hippocampal Cav1.2-dependent signaling mechanisms. J Neurosci. 2017;37(49):11894–911.
Khan MS, Boileau I, Kolla N, Mizrahi R. A systematic review of the role of the nociceptin receptor system in stress, cognition, and reward: relevance to schizophrenia. Transl Psychiatry. 2018;8(1):38.
Article
PubMed
PubMed Central
Google Scholar
Silva EF, Silva AI, Asth L, Souza LS, Zaveri NT, Guerrini R, et al. Nociceptin/orphanin FQ receptor agonists increase aggressiveness in the mouse resident-intruder test. Behav Brain Res. 2019;356:120–6.
Article
CAS
PubMed
Google Scholar
Bohne P, Volkmann A, Schwarz MK, Mark MD. Deletion of the P/Q-type calcium channel from serotonergic neurons drives male aggression in mice. J Neurosci. 2022;42(34):6637–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freund N, Juckel G. Bipolar disorder: its etiology and how to model in rodents. Methods Mol Biol. 2019;2011:61–77.
Article
CAS
PubMed
Google Scholar
Asth L, Tiago PRF, Costa LRF, Holanda VAD, Pacifico S, Zaveri NT, et al. Effects of non-peptide nociceptin/orphanin FQ receptor ligands on methylphenidate-induced hyperactivity in mice: implications for bipolar disorders. Neuropeptides. 2020;82: 102059.
Article
CAS
PubMed
Google Scholar
Ogura H, Furuya Y, Teramoto T, Niidome T, Nishizawa Y, Yamanishi Y. Peptide N- and P/Q-type Ca2+ blockers inhibit stimulant-induced hyperactivity in mice. Peptides. 1998;19(6):1017–22.
Article
CAS
PubMed
Google Scholar
Yamada K, Teraoka T, Morita S, Hasegawa T, Nabeshima T. Omega-conotoxin GVIA inhibits the methylphenidate-induced but not methamphetamine-induced behavior. Neurosci Lett. 1994;165(1–2):191–4.
Article
CAS
PubMed
Google Scholar
Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB. Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol. 2005;76(6):349–92.
Article
CAS
PubMed
Google Scholar
Witta J, Buzas B, Cox BM. Traumatic brain injury induces nociceptin/orphanin FQ expression in neurons of the rat cerebral cortex. J Neurotrauma. 2003;20(6):523–32.
Article
PubMed
Google Scholar
Awwad HO, Durand CD, Gonzalez LP, Tompkins P, Zhang Y, Lerner MR, et al. Post-blast treatment with Nociceptin/Orphanin FQ peptide (NOP) receptor antagonist reduces brain injury-induced hypoxia and signaling proteins in vestibulomotor-related brain regions. Behav Brain Res. 2018;340:183–94.
Article
CAS
PubMed
Google Scholar
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel). 2013;6(7):788–812.
Article
CAS
PubMed
Google Scholar
Guatteo E, Cucchiaroni ML, Mercuri NB. Substantia nigra control of basal ganglia nuclei. J Neural Transm Suppl. 2009;73:91–101.
CAS
Google Scholar
Meoni S, Cury RG, Moro E. New players in basal ganglia dysfunction in Parkinson’s disease. Prog Brain Res. 2020;252:307–27.
Article
PubMed
Google Scholar
Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62(1):63–88.
Article
CAS
PubMed
Google Scholar
Fasano A, Mazzoni A, Falotico E. Reaching and grasping movements in Parkinson’s disease: a review. J Parkinsons Dis. 2022;12(4):1083–113.
Article
PubMed
PubMed Central
Google Scholar
Mercatelli D, Bezard E, Eleopra R, Zaveri NT, Morari M. Managing Parkinson’s disease: moving ON with NOP. Br J Pharmacol. 2020;177(1):28–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mercatelli D, Pisanò CA, Novello S, Morari M. NOP receptor ligands and Parkinson’s disease. Handb Exp Pharmacol. 2019;254:213–32.
Article
CAS
PubMed
Google Scholar
Marti M, Mela F, Fantin M, Zucchini S, Brown JM, Witta J, et al. Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci. 2005;25(42):9591–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marti M, Rodi D, Li Q, Guerrini R, Fasano S, Morella I, et al. Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesias. J Neurosci. 2012;32(46):16106–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arcuri L, Novello S, Frassineti M, Mercatelli D, Pisanò CA, Morella I, et al. Anti-Parkinsonian and anti-dyskinetic profiles of two novel potent and selective nociceptin/orphanin FQ receptor agonists. Br J Pharmacol. 2018;175(5):782–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marti M, Mela F, Budri M, Volta M, Malfacini D, Molinari S, et al. Acute and chronic antiparkinsonian effects of the novel nociceptin/orphanin FQ receptor antagonist NiK-21273 in comparison with SB-612111. Br J Pharmacol. 2013;168(4):863–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M. Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci. 2014;34(39):12953–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volta M, Marti M, McDonald J, Molinari S, Camarda V, Pelà M, et al. Pharmacological profile and antiparkinsonian properties of the novel nociceptin/orphanin FQ receptor antagonist 1-[1-cyclooctylmethyl-5-(1-hydroxy-1-methyl-ethyl)-1,2,3,6-tetrahydro-pyridin-4-yl]-3-ethyl-1,3-dihydro-benzoimidazol-2-one (GF-4). Peptides. 2010;31(6):1194–204.
Article
CAS
PubMed
Google Scholar
Qu L, Wang Y, Zhang HT, Li N, Wang Q, Yang Q, et al. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons. Neurosci Lett. 2014;575:1–6.
Article
CAS
PubMed
Google Scholar