Cruikshank SJ, Weinberger NM: Evidence for the Hebbian hypothesis in experience-dependent physiological plasticity of neocortex: a critical review. Brain Res Brain Res Rev. 1996, 22: 191-228.
Article
CAS
PubMed
Google Scholar
Dulcis D, Spitzer NC: Reserve pool neuron transmitter respecification: Novel neuroplasticity. Dev Neurobiol. 2011, 72: 465-474.
Article
Google Scholar
Fox K: Experience-dependent plasticity mechanisms for neural rehabilitation in somatosensory cortex. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 369-381. 10.1098/rstb.2008.0252.
Article
PubMed Central
PubMed
Google Scholar
Katz LC, Shatz CJ: Synaptic activity and the construction of cortical circuits. Science. 1996, 274: 1133-1138. 10.1126/science.274.5290.1133.
Article
CAS
PubMed
Google Scholar
Kerr AL, Cheng SY, Jones TA: Experience-dependent neural plasticity in the adult damaged brain. J Commun Disord. 2011, 44: 538-548.
PubMed Central
PubMed
Google Scholar
Kleim JA, Jones TA: Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008, 51: S225-S239. 10.1044/1092-4388(2008/018).
Article
PubMed
Google Scholar
Leslie JH, Nedivi E: Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol. 2011, 94: 223-237. 10.1016/j.pneurobio.2011.05.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Singer W: Development and plasticity of cortical processing architectures. Science. 1995, 270: 758-764. 10.1126/science.270.5237.758.
Article
CAS
PubMed
Google Scholar
Rogers LJ: The molecular neurobiology of early learning, development, and sensitive periods, with emphasis on the avian brain. Mol Neurobiol. 1993, 7: 161-187. 10.1007/BF02769174.
Article
CAS
PubMed
Google Scholar
Foscarin S, Rossi F, Carulli D: Influence of the environment on adult CNS plasticity and repair. Cell Tissue Res. 2012, 349: 161-167. 10.1007/s00441-011-1293-4.
Article
PubMed
Google Scholar
Glasper ER, Schoenfeld TJ, Gould E: Adult neurogenesis: optimizing hippocampal function to suit the environment. Behav Brain Res. 2011, 227: 380-383.
Article
PubMed
Google Scholar
Karmarkar UR, Dan Y: Experience-dependent plasticity in adult visual cortex. Neuron. 2006, 52: 577-585. 10.1016/j.neuron.2006.11.001.
Article
CAS
PubMed
Google Scholar
O'Leary DD, Ruff NL, Dyck RH: Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr Opin Neurobiol. 1994, 4: 535-544. 10.1016/0959-4388(94)90054-X.
Article
PubMed
Google Scholar
Shideler KK, Yan J: M1 muscarinic receptor for the development of auditory cortical function. Mol Brain. 2010, 3: 29-10.1186/1756-6606-3-29.
Article
PubMed Central
PubMed
Google Scholar
Vida MD, Vingilis-Jaremko L, Butler BE, Gibson LC, Monteiro S: The reorganized brain: how treatment strategies for stroke and amblyopia can inform our knowledge of plasticity throughout the lifespan. Dev Psychobiol. 2012, 54: 357-368. 10.1002/dev.20625.
Article
CAS
PubMed
Google Scholar
Byrne JH: Cellular analysis of associative learning. Physiol Rev. 1987, 67: 329-439.
CAS
PubMed
Google Scholar
Descalzi G, Li XY, Chen T, Mercaldo V, Koga K, Zhuo M: Rapid synaptic potentiation within the anterior cingulate cortex mediates trace fear learning. Mol Brain. 2012, 5: 6-10.1186/1756-6606-5-6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kandel ER: The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 2012, 5: 14-10.1186/1756-6606-5-14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lansner A: Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci. 2009, 32: 178-186. 10.1016/j.tins.2008.12.002.
Article
CAS
PubMed
Google Scholar
Mayes A, Montaldi D, Migo E: Associative memory and the medial temporal lobes. Trends Cogn Sci. 2007, 11: 126-135. 10.1016/j.tics.2006.12.003.
Article
PubMed
Google Scholar
Suzuki WA: Associative learning signals in the brain. Prog Brain Res. 2008, 169: 305-320.
Article
PubMed
Google Scholar
Padamsey Z, Emptage NJ: Imaging synaptic plasticity. Mol Brain. 2011, 4: 36-10.1186/1756-6606-4-36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pulvirenti L: Neural plasticity and memory: towards an integrated view. Funct Neurol. 1992, 7: 481-490.
CAS
PubMed
Google Scholar
Holtmaat A, Svoboda K: Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009, 10: 647-658. 10.1038/nrn2699.
Article
CAS
PubMed
Google Scholar
Finnerty GT, Roberts LS, Connors BW: Sensory experience modifies the short-term dynamics of neocortical synapses. Nature. 1999, 400: 367-371. 10.1038/22553.
Article
CAS
PubMed
Google Scholar
Hardingham N, Wright N, Dachtler J, Fox K: Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII. Neuron. 2008, 60: 861-874. 10.1016/j.neuron.2008.10.018.
Article
CAS
PubMed
Google Scholar
Clem RL, Barth A: Pathway-specific trafficking of native AMPARs by in vivo experience. Neuron. 2006, 49: 663-670. 10.1016/j.neuron.2006.01.019.
Article
CAS
PubMed
Google Scholar
Jiao Y, Zhang C, Yanagawa Y, Sun QQ: Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci. 2006, 26: 8691-8701. 10.1523/JNEUROSCI.2478-06.2006.
Article
CAS
PubMed
Google Scholar
Sun QQ, Zhang Z: Whisker experience modulates long-term depression in neocortical gamma-aminobutyric acidergic interneurons in barrel cortex. J Neurosci Res. 2011, 89: 73-85. 10.1002/jnr.22530.
Article
CAS
PubMed
Google Scholar
Wen JA, Barth AL: Input-specific critical periods for experience-dependent plasticity in layer 2/3 pyramidal neurons. J Neurosci. 2011, 31: 4456-4465. 10.1523/JNEUROSCI.6042-10.2011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lendvai B, Stern EA, Chen B, Svoboda K: Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000, 404: 876-881. 10.1038/35009107.
Article
CAS
PubMed
Google Scholar
Rema V, Armstrong-James M, Ebner FF: Experience-dependent plasticity is impaired in adult rat barrel cortex after whiskers are unused in early postnatal life. J Neurosci. 2003, 23: 358-366.
CAS
PubMed
Google Scholar
Holtmaat A, De Paola V, Wilbrecht L, Knott GW: Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. Behav Brain Res. 2008, 192: 20-25. 10.1016/j.bbr.2008.04.005.
Article
CAS
PubMed
Google Scholar
Vees AM, Micheva KD, Beaulieu C, Descarries L: Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat. J Comp Neurol. 1998, 400: 110-124. 10.1002/(SICI)1096-9861(19981012)400:1<110::AID-CNE8>3.0.CO;2-C.
Article
CAS
PubMed
Google Scholar
Brown CE, Dyck RH: Experience-dependent regulation of synaptic zinc is impaired in the cortex of aged mice. Neuroscience. 2003, 119: 795-801. 10.1016/S0306-4522(03)00292-6.
Article
CAS
PubMed
Google Scholar
Land PW, Shamalla-Hannah L: Experience-dependent plasticity of zinc-containing cortical circuits during a critical period of postnatal development. J Comp Neurol. 2002, 447: 43-56. 10.1002/cne.10229.
Article
PubMed
Google Scholar
Sachdev RN, Egli M, Stonecypher M, Wiley RG, Ebner FF: Enhancement of cortical plasticity by behavioral training in acetylcholine-depleted adult rats. J Neurophysiol. 2000, 84: 1971-1981.
CAS
PubMed
Google Scholar
Wallace H, Glazewski S, Liming K, Fox K: The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex. J Neurosci. 2001, 21: 3881-3894.
CAS
PubMed
Google Scholar
Bavelier D, Neville HJ: Cross-modal plasticity: where and how?. Nat Rev Neurosci. 2002, 3: 443-452.
CAS
PubMed
Google Scholar
Lomber SG, Meredith MA, Kral A: Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci. 2010, 13: 1421-1427. 10.1038/nn.2653.
Article
CAS
PubMed
Google Scholar
Ni H, et al: Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit. PLoS One. 2010, 5: e13736-10.1371/journal.pone.0013736.
Article
PubMed Central
PubMed
Google Scholar
Ye B, Huang L, Gao Z, Chen P, Ni H, Guan S, Zhu Y, Wang JH: The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs. PLoS One. 2012, 7: e41986-10.1371/journal.pone.0041986.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen N, Chen X, Wang J-H: Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. Journal of Cell Science. 2008, 121: 2961-2971. 10.1242/jcs.022368.
Article
CAS
PubMed
Google Scholar
Ge R, Chen N, Wang JH: Real-time neuronal homeostasis by coordinating VGSC intrinsic properties. Biochem Biophys Res Commun. 2009, 387: 585-589. 10.1016/j.bbrc.2009.07.066.
Article
CAS
PubMed
Google Scholar
Turrigiano GG, Nelson S: Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004, 5: 97-107. 10.1038/nrn1327.
Article
CAS
PubMed
Google Scholar
Burrone J, Murthy V: Synaptic gain control and homeostasis. Curr Opin Neurobiol. 2003, 13: 560-567. 10.1016/j.conb.2003.09.007.
Article
CAS
PubMed
Google Scholar
Desai NS, Rutherford L, Turrigiano GG: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci. 1999, 2: 515-520. 10.1038/9165.
Article
CAS
PubMed
Google Scholar
Ramakers GJ, Corner MA, Habers AM: Development in the absence of spontaneous bioelectric activity results in increased stereotyped burst firing in cultures of associated cerebral cortex. Exp Brain Res. 1990, 79: 157-166.
Article
CAS
PubMed
Google Scholar
Van Den Pol AN, Obrietan K, Belousov A: Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture. Neuroscience. 1996, 74: 653-674. 10.1016/0306-4522(96)00153-4.
Article
CAS
PubMed
Google Scholar
Burrone J, O'Byrne M, Murthy VN: Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature. 2002, 420: 414-418. 10.1038/nature01242.
Article
CAS
PubMed
Google Scholar
Desai NS, Rutherford LC, Turrigiano GG: BDNF regulates the intrinsic excitability of cortical neurons. Learn Mem. 1999, 6: 284-291.
PubMed Central
CAS
PubMed
Google Scholar
Demarque M, Spitzer NC: Neurotransmitter phenotype plasticity: an unexpected mechanism in the toolbox of network activity homeostasis. Dev Neurobiol. 2011, 72: 22-32.
Article
Google Scholar
Ehlers MD: Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003, 6: 231-242. 10.1038/nn1013.
Article
CAS
PubMed
Google Scholar
Perez-Otano I, Ehlers MD: Homeostatic plasticity and NMDA receptor trafficking. Trends Neuroscie. 2005, 28: 229-238. 10.1016/j.tins.2005.03.004.
Article
CAS
Google Scholar
Spitzer NC, Borodinsky LN, Root CM: Homeostatic activity-dependent paradigm for neurotransmitter specification. Cell Calcium. 2005, 37: 417-423. 10.1016/j.ceca.2005.01.021.
Article
CAS
PubMed
Google Scholar
Thiagarajan TC, Piedras-Renteria ES, Tsien RW: Alpha- and beta-CaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron. 2002, 36: 1103-1114. 10.1016/S0896-6273(02)01049-8.
Article
CAS
PubMed
Google Scholar
Wang J-H, Kelly PT: Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol. 2001, 533: 407-422. 10.1111/j.1469-7793.2001.0407a.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu J, Qian H, Chen N, Wang JH: Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS One. 2011, 6: e25219-10.1371/journal.pone.0025219.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu J, Qian H, Wang JH: Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Mol Brain. 2012, 5: 26-10.1186/1756-6606-5-26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang F, Liu B, Lei Z, Wang J: mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012, 5: 20-10.1186/1756-6606-5-20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Freund TF, Buzsaki G: Interneurons of the hippocampus. Hippocampus. 1996, 6: 347-470.
Article
CAS
PubMed
Google Scholar
McKay BE, Turner RW: Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol. 2005, 567 (Pt3): 829-850.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J: The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008, 121: 2951-2960. 10.1242/jcs.025684.
Article
CAS
PubMed
Google Scholar
Wang Q, Liu X, Ge R, Guan S, Zhu Y, Wang JH: The postnatal development of intrinsic properties and spike encoding at cortical GABAergic neurons. Biochem Biophys Res Commun. 2009, 378: 706-710. 10.1016/j.bbrc.2008.11.104.
Article
CAS
PubMed
Google Scholar
Ge R, Qian H, Wang JH: Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain. 2011, 4: 19-10.1186/1756-6606-4-19.
Article
PubMed Central
PubMed
Google Scholar
Wei J, Zhang M, Zhu Y, Wang JH: Ca2+−calmodulin signalling pathway upregulates GABA synaptic transmission through cytoskeleton-mediated mechanisms. Neuroscience. 2004, 127: 637-647. 10.1016/j.neuroscience.2004.05.056.
Article
CAS
PubMed
Google Scholar
Wang J-H: Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull. 2003, 60: 53-58. 10.1016/S0361-9230(03)00026-1.
Article
PubMed
Google Scholar
Chen N, Zhu Y, Gao X, Guan S, Wang J-H: Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun. 2006, 346: 281-287. 10.1016/j.bbrc.2006.05.120.
Article
CAS
PubMed
Google Scholar
Chen N, Chen SL, Wu YL, Wang JH: The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun. 2006, 340: 151-157. 10.1016/j.bbrc.2005.11.170.
Article
CAS
PubMed
Google Scholar
Chen N, Chen X, Yu J, Wang J-H: After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun. 2006, 346: 938-945. 10.1016/j.bbrc.2006.06.003.
Article
CAS
PubMed
Google Scholar
Chen N, Yu J, Qian H, Ge R, Wang JH: Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS One. 2010, 5 (7): e11868-10.1371/journal.pone.0011868.
Article
PubMed Central
PubMed
Google Scholar
Zhao J, Wang D, Wang J-H: Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Molecular Brain. 2012, 5 (12): 1-10.
CAS
Google Scholar