Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M: Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res. 2004, 50: 137-151. 10.1016/j.neures.2004.06.015.
Article
PubMed
Google Scholar
Turner RS, Desmurget M: Basal ganglia contributions to motor control: a vigorous tutor. Curr Opin Neurobiol. 2010, 20: 704-716. 10.1016/j.conb.2010.08.022.
Article
PubMed
PubMed Central
Google Scholar
Chesselet MF, Delfs JM: Basal ganglia and movement disorders: an update. Trends Neurosci. 1996, 19: 417-422. 10.1016/S0166-2236(96)10052-7.
Article
PubMed
Google Scholar
Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986, 9: 357-381. 10.1146/annurev.ne.09.030186.002041.
Article
PubMed
Google Scholar
Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M: Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008, 23 (Suppl 3): S548-S559. 10.1002/mds.22062.
Article
PubMed
Google Scholar
Graybiel AM: Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 1990, 13: 244-254. 10.1016/0166-2236(90)90104-I.
Article
PubMed
Google Scholar
Lanciego JL, Luquin N, Obeso JA: Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012, 2: a009621-10.1101/cshperspect.a009621.
Article
PubMed
PubMed Central
Google Scholar
Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, Ponterio G, Pisani A: Centrality of striatal cholinergic transmission in Basal Ganglia function. Front Neuroanat. 2011, 5: 6-10.3389/fnana.2011.00006.
Article
PubMed
PubMed Central
Google Scholar
Bayes A, Grant SG: Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci. 2009, 10: 635-646. 10.1038/nrn2701.
Article
PubMed
Google Scholar
Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N: Spatio-temporal transcriptome of the human brain. Nature. 2011, 478: 483-489. 10.1038/nature10523.
Article
PubMed
PubMed Central
Google Scholar
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, van de Lagemaat LN, Smith KA, Ebbert A, Riley ZL, Abajian C, Beckmann CF, Bernard A, Bertagnolli D, Boe AF, Cartagena PM, Chakravarty MM, Chapin M, Chong J, Dalley RA, Daly BD, Dang C, Datta S, Dee N, Dolbeare TA, Faber V, Feng D, Fowler DR, Goldy J, Gregor BW: An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012, 489: 391-399. 10.1038/nature11405.
Article
PubMed
PubMed Central
Google Scholar
Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ: Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol. 2012, 8: 518-530. 10.1038/nrneurol.2012.156.
Article
PubMed
Google Scholar
Scholz B, Svensson M, Alm H, Skold K, Falth M, Kultima K, Guigoni C, Doudnikoff E, Li Q, Crossman AR, Bezard E, Andren PE: Striatal proteomic analysis suggests that first L-dopa dose equates to chronic exposure. PLoS One. 2008, 3: e1589-10.1371/journal.pone.0001589.
Article
PubMed
PubMed Central
Google Scholar
Valastro B, Dekundy A, Krogh M, Lundblad M, James P, Danysz W, Quack G, Cenci MA: Proteomic analysis of striatal proteins in the rat model of L-DOPA-induced dyskinesia. J Neurochem. 2007, 102: 1395-1409. 10.1111/j.1471-4159.2007.04655.x.
Article
PubMed
Google Scholar
Kultima K, Scholz B, Alm H, Skold K, Svensson M, Crossman AR, Bezard E, Andren PE, Lonnstedt I: Normalization and expression changes in predefined sets of proteins using 2D gel electrophoresis: a proteomic study of L-DOPA induced dyskinesia in an animal model of Parkinson’s disease using DIGE. BMC Bioinformatics. 2006, 7: 475-10.1186/1471-2105-7-475.
Article
PubMed
PubMed Central
Google Scholar
Bourdenx M, Nilsson A, Wadensten H, Falth M, Li Q, Crossman AR, Andren PE, Bezard E: Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson’s disease and l-DOPA-induced dyskinesia. Neurobiol Dis. 2014, 62: 307-312. 10.1016/j.nbd.2013.10.016.
Article
PubMed
Google Scholar
Deschepper M, Hoogendoorn B, Brooks S, Dunnett SB, Jones L: Proteomic changes in the brains of Huntington’s disease mouse models reflect pathology and implicate mitochondrial changes. Brain Res Bull. 2012, 88: 210-222. 10.1016/j.brainresbull.2011.01.012.
Article
PubMed
Google Scholar
Lessner G, Schmitt O, Haas SJ, Mikkat S, Kreutzer M, Wree A, Glocker MO: Differential proteome of the striatum from hemiparkinsonian rats displays vivid structural remodeling processes. J Proteome Res. 2010, 9: 4671-4687. 10.1021/pr100389u.
Article
PubMed
Google Scholar
Wegrzynowicz M, Holt HK, Friedman DB, Bowman AB: Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese. J Proteome Res. 2012, 11: 1118-1132. 10.1021/pr200839d.
Article
PubMed
PubMed Central
Google Scholar
Chin MH, Qian WJ, Wang H, Petyuk VA, Bloom JS, Sforza DM, Lacan G, Liu D, Khan AH, Cantor RM, Bigelow DJ, Melega WP, Camp DG, Smith RD, Smith DJ: Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease. J Proteome Res. 2008, 7: 666-677. 10.1021/pr070546l.
Article
PubMed
PubMed Central
Google Scholar
Zhao X, Li Q, Zhao L, Pu X: Proteome analysis of substantia nigra and striatal tissue in the mouse MPTP model of Parkinson’s disease. Proteomics Clin Appl. 2007, 1: 1559-1569. 10.1002/prca.200700077.
Article
PubMed
Google Scholar
Liu X, Miller BR, Rebec GV, Clemmer DE: Protein expression in the striatum and cortex regions of the brain for a mouse model of Huntington’s disease. J Proteome Res. 2007, 6: 3134-3142. 10.1021/pr070092s.
Article
PubMed
PubMed Central
Google Scholar
Patel S, Sinha A, Singh MP: Identification of differentially expressed proteins in striatum of maneb-and paraquat-induced Parkinson’s disease phenotype in mouse. Neurotoxicol Teratol. 2007, 29: 578-585. 10.1016/j.ntt.2007.04.002.
Article
PubMed
Google Scholar
Skold K, Svensson M, Nilsson A, Zhang X, Nydahl K, Caprioli RM, Svenningsson P, Andren PE: Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J Proteome Res. 2006, 5: 262-269. 10.1021/pr050281f.
Article
PubMed
Google Scholar
Pierson J, Svenningsson P, Caprioli RM, Andren PE: Increased levels of ubiquitin in the 6-OHDA-lesioned striatum of rats. J Proteome Res. 2005, 4: 223-226. 10.1021/pr049836h.
Article
PubMed
Google Scholar
Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M: Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics. 2004, 4: 3943-3952. 10.1002/pmic.200400848.
Article
PubMed
Google Scholar
Kitsou E, Pan S, Zhang J, Shi M, Zabeti A, Dickson DW, Albin R, Gearing M, Kashima DT, Wang Y, Beyer RP, Zhou Y, Pan C, Caudle WM: Identification of proteins in human substantia nigra. Proteomics Clin Appl. 2008, 2: 776-782. 10.1002/prca.200800028.
Article
PubMed
Google Scholar
Werner CJ, Heyny-von Haussen R, Mall G, Wolf S: Proteome analysis of human substantia nigra in Parkinson’s disease. Proc Natl Acad Sci U S A. 2008, 6: 8-
Google Scholar
Guo LT, Friedmann T, King CC: Partial characterization of the proteome of the mouse striatum. Proteomics. 2007, 7: 3867-3869. 10.1002/pmic.200700163.
Article
PubMed
Google Scholar
Bernay B, Gaillard MC, Guryca V, Emadali A, Kuhn L, Bertrand A, Detraz I, Carcenac C, Savasta M, Brouillet E, Garin J, Elalouf JM: Discovering new bioactive neuropeptides in the striatum secretome using in vivo microdialysis and versatile proteomics. Mol Cell Proteomics. 2009, 8: 946-958. 10.1074/mcp.M800501-MCP200.
Article
PubMed
PubMed Central
Google Scholar
Becker KG, Barnes KC, Bright TJ, Wang SA: The genetic association database. Nat Genet. 2004, 36: 431-432. 10.1038/ng0504-431.
Article
PubMed
Google Scholar
Pan S, Shi M, Jin J, Albin RL, Lieberman A, Gearing M, Lin B, Pan C, Yan X, Kashima DT, Zhang J: Proteomics identification of proteins in human cortex using multidimensional separations and MALDI tandem mass spectrometer. Mol Cell Proteomics. 2007, 6: 1818-1823. 10.1074/mcp.M700158-MCP200.
Article
PubMed
Google Scholar
Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, Hixson KK, Lipton MS, Camp DG, Coyle PK, Smith RD, Bergquist J: Establishing the proteome of normal human cerebrospinal fluid. PLoS One. 2010, 5: e10980-10.1371/journal.pone.0010980.
Article
PubMed
PubMed Central
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013, 41: D808-D815. 10.1093/nar/gks1094.
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Irigoyen J, Zelaya MV, Santamaria E: Applying mass spectrometry-based qualitative proteomics to human amygdaloid complex. Front Cell Neurosci. 2014, 8: 80-10.3389/fncel.2014.00080.
Article
PubMed
PubMed Central
Google Scholar
Kwon KH, Kim JY, Kim SY, Min HK, Lee HJ, Ji IJ, Kang T, Park GW, An HJ, Lee B, Ravid R, Ferrer I, Chung CK, Paik YK, Hancock WS, Park YM, Yoo JS: Chromosome 11-centric human proteome analysis of human brain hippocampus tissue. J Proteome Res. 2013, 12: 97-105. 10.1021/pr3008368.
Article
PubMed
Google Scholar
Fernandez-Irigoyen J, Corrales FJ, Santamaria E: Proteomic atlas of the human olfactory bulb. J Proteomics. 2012, 75: 4005-4016. 10.1016/j.jprot.2012.05.011.
Article
PubMed
Google Scholar
Krishnamurthy D, Levin Y, Harris LW, Umrania Y, Bahn S, Guest PC: Analysis of the human pituitary proteome by data independent label-free liquid chromatography tandem mass spectrometry. Proteomics. 2011, 11: 495-500. 10.1002/pmic.201000496.
Article
PubMed
Google Scholar
Martins-de-Souza D, Maccarrone G, Reckow S, Falkai P, Schmitt A, Turck CW: Shotgun mass spectrometry analysis of the human thalamus proteome. J Sep Sci. 2009, 32: 1231-1236. 10.1002/jssc.200900008.
Article
PubMed
Google Scholar
Licker V, Cote M, Lobrinus JA, Rodrigo N, Kovari E, Hochstrasser DF, Turck N, Sanchez JC, Burkhard PR: Proteomic profiling of the substantia nigra demonstrates CNDP2 overexpression in Parkinson’s disease. J Proteomics. 2012, 75: 4656-4667. 10.1016/j.jprot.2012.02.032.
Article
PubMed
Google Scholar
Licker V, Turck N, Kovari E, Burkhardt K, Cote M, Surini-Demiri M, Lobrinus JA, Sanchez JC, Burkhard PR: Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson’s disease pathogenesis. Proteomics. 2014, 6: 784-794. 10.1002/pmic.201300342.
Article
Google Scholar
Jin J, Hulette C, Wang Y, Zhang T, Pan C, Wadhwa R, Zhang J: Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics. 2006, 5: 1193-1204. 10.1074/mcp.M500382-MCP200.
Article
PubMed
Google Scholar
von Eichborn J, Dunkel M, Gohlke BO, Preissner SC, Hoffmann MF, Bauer JM, Armstrong JD, Schaefer MH, Andrade-Navarro MA, Le Novere N, Croning MD, Grant SG, van Nierop P, Smit AB, Preissner R: SynSysNet: integration of experimental data on synaptic protein-protein interactions with drug-target relations. Nucleic Acids Res. 2013, 41: D834-D840. 10.1093/nar/gks1040.
Article
PubMed
PubMed Central
Google Scholar
Croning MD, Marshall MC, McLaren P, Armstrong JD, Grant SG: G2Cdb: the genes to cognition database. Nucleic Acids Res. 2009, 37: D846-D851. 10.1093/nar/gkn700.
Article
PubMed
PubMed Central
Google Scholar
Pirooznia M, Wang T, Avramopoulos D, Valle D, Thomas G, Huganir RL, Goes FS, Potash JB, Zandi PP: SynaptomeDB: an ontology-based knowledgebase for synaptic genes. Bioinformatics. 2012, 28: 897-899. 10.1093/bioinformatics/bts040.
Article
PubMed
PubMed Central
Google Scholar
da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4: 44-57. 10.1038/nprot.2008.211.
Article
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27.
Article
PubMed
PubMed Central
Google Scholar
Mi H, Muruganujan A, Casagrande JT, Thomas PD: Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013, 8: 1551-1566. 10.1038/nprot.2013.092.
Article
PubMed
Google Scholar
Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH: Functional organization of the transcriptome in human brain. Nat Neurosci. 2008, 11: 1271-1282. 10.1038/nn.2207.
Article
PubMed
PubMed Central
Google Scholar
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008, 28: 264-278. 10.1523/JNEUROSCI.4178-07.2008.
Article
PubMed
Google Scholar
Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA: Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom. 2004, 39: 845-855. 10.1002/jms.659.
Article
PubMed
Google Scholar
Mann M, Kelleher NL: Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A. 2008, 105: 18132-18138. 10.1073/pnas.0800788105.
Article
PubMed
PubMed Central
Google Scholar
Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC: Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal Chem. 2011, 83: 5442-5446. 10.1021/ac200812d.
Article
PubMed
PubMed Central
Google Scholar
Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW: Proteome analysis of human dorsolateral prefrontal cortex using shotgun mass spectrometry. J Sep Sci. 2008, 31: 3122-3126. 10.1002/jssc.200800224.
Article
PubMed
Google Scholar
Pan S, Zhu D, Quinn JF, Peskind ER, Montine TJ, Lin B, Goodlett DR, Taylor G, Eng J, Zhang J: A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics. 2007, 7: 469-473. 10.1002/pmic.200600756.
Article
PubMed
Google Scholar
Lehnert S, Jesse S, Rist W, Steinacker P, Soininen H, Herukka SK, Tumani H, Lenter M, Oeckl P, Ferger B, Hengerer B, Otto M: iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson’s disease dementia. Exp Neurol. 2012, 234: 499-505. 10.1016/j.expneurol.2012.01.024.
Article
PubMed
Google Scholar
Picotti P, Aebersold R: Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012, 9: 555-566. 10.1038/nmeth.2015.
Article
PubMed
Google Scholar
Zhao Y, Giorgianni F, Desiderio DM, Fang B, Beranova-Giorgianni S: Toward a global analysis of the human pituitary proteome by multiple gel-based technology. Anal Chem. 2005, 77: 5324-5331. 10.1021/ac050354e.
Article
PubMed
Google Scholar
Dumont D, Noben JP, Verhaert P, Stinissen P, Robben J: Gel-free analysis of the human brain proteome: application of liquid chromatography and mass spectrometry on biopsy and autopsy samples. Proteomics. 2006, 6: 4967-4977. 10.1002/pmic.200600080.
Article
PubMed
Google Scholar
Martins-de-Souza D, Guest PC, Steeb H, Pietsch S, Rahmoune H, Harris LW, Bahn S: Characterizing the proteome of the human dorsolateral prefrontal cortex by shotgun mass spectrometry. Proteomics. 2011, 11: 2347-2353. 10.1002/pmic.201000718.
Article
PubMed
Google Scholar
Ishii A, Dutta R, Wark GM, Hwang SI, Han DK, Trapp BD, Pfeiffer SE, Bansal R: Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci U S A. 2009, 106: 14605-14610. 10.1073/pnas.0905936106.
Article
PubMed
PubMed Central
Google Scholar
Legrain P, Aebersold R, Archakov A, Bairoch A, Bala K, Beretta L, Bergeron J, Borchers CH, Corthals GL, Costello CE, Deutsch EW, Domon B, Hancock W, He F, Hochstrasser D, Marko-Varga G, Salekdeh GH, Sechi S, Snyder M, Srivastava S, Uhlen M, Wu CH, Yamamoto T, Paik YK, Omenn GS: The human proteome project: current state and future direction. Mol Cell Proteomics. 2011, 10: M111 009993-10.1074/mcp.M111.009993.
Article
PubMed
PubMed Central
Google Scholar
Insel TR, Landis SC, Collins FS: Research priorities. The NIH BRAIN initiative. Science. 2013, 340: 687-688. 10.1126/science.1239276.
Article
PubMed
Google Scholar
Craft GE, Chen A, Nairn AC: Recent advances in quantitative neuroproteomics. Methods. 2013, 61: 186-218. 10.1016/j.ymeth.2013.04.008.
Article
PubMed
PubMed Central
Google Scholar
Altelaar AF, Munoz J, Heck AJ: Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013, 14: 35-48. 10.1038/nrg3356.
Article
PubMed
Google Scholar
Bell JE, Alafuzoff I, Al-Sarraj S, Arzberger T, Bogdanovic N, Budka H, Dexter DT, Falkai P, Ferrer I, Gelpi E, Gentleman SM, Giaccone G, Huitinga I, Ironside JW, Klioueva N, Kovacs GG, Meyronet D, Palkovits M, Parchi P, Patsouris E, Reynolds R, Riederer P, Roggendorf W, Seilhean D, Schmitt A, Schmitz P, Streichenberger N, Schwalber A, Kretzschmar H: Management of a twenty-first century brain bank: experience in the BrainNet Europe consortium. Acta Neuropathol. 2008, 115: 497-507. 10.1007/s00401-008-0360-8.
Article
PubMed
Google Scholar
Tang WH, Shilov IV, Seymour SL: Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res. 2008, 7: 3661-3667. 10.1021/pr070492f.
Article
PubMed
Google Scholar
Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O’Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in. Nucleic Acids Res. 2013, 41: D1063-D1069. 10.1093/nar/gks1262.
Article
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000, 25: 25-29. 10.1038/75556.
Article
PubMed
PubMed Central
Google Scholar
Reimand J, Arak T, Vilo J: g:Profiler-a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 2011, 39: W307-W315. 10.1093/nar/gkr378.
Article
PubMed
PubMed Central
Google Scholar
Wein SP, Cote RG, Dumousseau M, Reisinger F, Hermjakob H, Vizcaino JA: Improvements in the protein identifier cross-reference service. Nucleic Acids Res. 2012, 40: W276-W280. 10.1093/nar/gks338.
Article
PubMed
PubMed Central
Google Scholar