Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.
Article
CAS
Google Scholar
Levelt CN, Hübener M. Critical-period plasticity in the visual cortex. Annu Rev Neurosci. 2012;35:309–30. https://doi.org/10.1146/annurev-neuro-061010-113813.
Article
CAS
PubMed
Google Scholar
Tucker DM, Poulsen C, Luu P. Critical periods for the neurodevelopmental processes of externalizing and internalizing. Dev Psychopathol. 2015;27:321–46. https://doi.org/10.1017/S0954579415000024.
Article
PubMed
Google Scholar
Takesian AE, Bogart LJ, Lichtman JW, Hensch TK. Inhibitory circuit gating of auditory critical-period plasticity. Nat Neurosci. 2018;21:218–27.
Article
CAS
Google Scholar
Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci. 2010;30:14964–71. https://doi.org/10.1523/JNEUROSCI.4812-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mataga N, Fujishima S, Condie BG, Hensch TK. Experience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/zif268. J Neurosci. 2001;21:9724–32.
Article
CAS
Google Scholar
Hübener M, Bonhoeffer T. Neuronal plasticity: beyond the critical period. Cell. 2014;159:727–37.
Article
Google Scholar
Keck T, Mrsic-Flogel TD, Vaz Afonso M, Eysel UT, Bonhoeffer T, Hübener M. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat Neurosci. 2008;11(10):1162–7.
Article
CAS
Google Scholar
Voss P, Lassonde M, Gougoux F, Fortin M, Guillemot JP, Lepore F. Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr Biol. 2004;14:1734–8.
Article
CAS
Google Scholar
Fieger A, Röder B, Teder-Sälejärvi W, Hillyard SA, Neville HJ. Auditory spatial tuning in late-onset blindness in humans. J Cogn Neurosci. 2006;18(2):149–57.
Article
Google Scholar
Norman JF, Bartholomew AN. Blindness enhances tactile acuity and haptic 3-D shape discrimination. Attention Perception Psychophys. 2011;73(7):2323–31.
Article
Google Scholar
Burton H. Visual cortex activity in early and late blind people. J Neurosci. 2003;23:4005.
Article
CAS
Google Scholar
Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Faiz L, Dambrosia J, et al. Functional relevance of cross-modal plasticity in blind humans. Nature. 1997;389:180–3.
Article
CAS
Google Scholar
Aerts J, Nys J, Arckens L. A highly reproducible and straightforward method to perform in vivo ocular enucleation in the mouse after eye opening. J Vis Exp. 2014;92:e51936. https://doi.org/10.3791/51936.
Article
Google Scholar
Van Brussel L, Gerits A, Arckens L. Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex. 2011;21:2133–46. https://doi.org/10.1093/cercor/bhq286.
Article
PubMed
Google Scholar
Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L. The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age dependent. J Comp Neurol. 2014;522:950–70. https://doi.org/10.1002/cne.23455.
Article
PubMed
Google Scholar
Gilbert CD, Li W. Adult visual cortical plasticity. Neuron. 2012;75:250–64.
Article
CAS
Google Scholar
Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci. 2002;3:443–52.
Article
CAS
Google Scholar
Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience. 2002;111:815–35.
Article
CAS
Google Scholar
Kondo M. Molecular mechanisms of experience-dependent structural and functional plasticity in the brain. Anat Sci Int. 2017;92:1.
Article
CAS
Google Scholar
Berardi N, Pizzorusso T, Ratto GM, Maffei L. Molecular basis of plasticity in the visual cortex. Trends Neurosci. 2003;26:369–78.
Article
CAS
Google Scholar
Rabinowitch I, Bai J. The foundations of cross-modal plasticity. Commun Integr Biol. 2016;9:1–3.
Article
Google Scholar
Morishita H, Miwa JM, Heintz N, Hensch TK. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science. 2010;330:1238–40. https://doi.org/10.1126/science.1195320.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bear M, Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature. 1986;320:172–6. https://doi.org/10.1038/320172a0.
Article
CAS
PubMed
Google Scholar
Kasamatsu T, Pettigrew JD, Ary M. Restoration of visual cortical plasticity by local microperfusion of norepinephrine. J Comp Neurol. 1979;185:163–81.
Article
CAS
Google Scholar
Maya-Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320:385–8.
Article
CAS
Google Scholar
Gagolewicz PJ, Dringenberg HC. Age-dependent switch of the role of serotonergic 5-HT1A receptors in gating long-term potentiation in rat visual cortex in vivo. Neural Plast. 2016;2016:6404082.
Article
Google Scholar
Dahlström A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia. 1964;20:398–9.
Article
Google Scholar
Lidov HGW, Grzanna R, Molliver ME. The serotonin innervation of the cerebral cortex in the rat—an immunohistochemical analysis. Neuroscience. 1980;5:207–27. https://doi.org/10.1016/0306-4522(80)90099-8.
Article
CAS
PubMed
Google Scholar
Juckel G, Gallinat J, Riedel M, Sokullu S, Schulz C, Möller HJ, et al. Serotonergic dysfunction in schizophrenia assessed by the loudness dependence measure of primary auditory cortex evoked activity. Schizophr Res. 2003;64:115–24.
Article
Google Scholar
Ji W, Suga N. Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. J Neurosci. 2007;27:4910–8.
Article
CAS
Google Scholar
Jitsuki S, Takemoto K, Kawasaki T, Tada H, Takahashi A, Becamel C, et al. Serotonin mediates cross-modal reorganization of cortical circuits. Neuron. 2011;69:780–92. https://doi.org/10.1016/j.neuron.2011.01.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stutzmann GE, McEwen BS, LeDoux JE. Serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. J Neurosci. 1998;18:9529–38.
Article
CAS
Google Scholar
Dugué GP, Mainen ZF. How serotonin gates olfactory information flow. Nat Neurosci. 2009;12:673–5.
Article
Google Scholar
Palacios JM. Serotonin receptors in brain revisited. Brain Res. 1645;2016:46–9.
Google Scholar
Moreau AW, Amar M, Callebert J, Fossier P. Serotonergic modulation of LTP at excitatory and inhibitory synapses in the developing rat visual cortex. Neuroscience. 2013;238:148–58.
Article
CAS
Google Scholar
Maya-Vetencourt JF, Tiraboschi E, Spolidoro M, Castrén E, Maffei L. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. Eur J Neurosci. 2011;33:49–57.
Article
Google Scholar
Baroncelli L, Sale A, Viegi A, Maya-Vetencourt JF, De Pasquale R, Baldini S, et al. Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp Neurol. 2010;226:100–9.
Article
Google Scholar
Takahashi TT. Serotonin as a mediator of cross-modal cortical reorganization. Commun Integr Biol. 2011;4:459–61. https://doi.org/10.4161/cib.4.4.15470.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Whitt J. Cross-modal synaptic plasticity in adult primary sensory cortices. Curr Opin Neurobiol. 2015;35:119–26.
Article
CAS
Google Scholar
Petrus E, Isaiah A, Jones AP, Li D, Wang H, Lee HK, et al. Crossmodal induction of Thalamocortical potentiation leads to enhanced information processing in the auditory cortex. Neuron. 2014;81:664–73.
Article
CAS
Google Scholar
Jang H-J, Cho K-H, Park S-W, Kim M-J, Yoon SH, Rhie D-J. Effects of serotonin on the induction of long-term depression in the rat visual cortex. Korean J Physiol Pharmacol. 2010;14:337–43. https://doi.org/10.4196/kjpp.2010.14.5.337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maya-Vetencourt JF, Pizzorusso T. Molecular mechanisms at the basis of plasticity in the developing visual cortex: epigenetic processes and gene programs. J Exp Neurosci. 2013;7:75–83.
Article
Google Scholar
Kuhlman SJ, Olivas ND, Tring E, Ikrar T, Xu X, Trachtenberg JT. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature. 2013;501:543–6. https://doi.org/10.1038/nature12485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu Y, Kaneko M, Tang Y, Alvarez-Buylla A, Stryker MP. A cortical disinhibitory circuit for enhancing adult plasticity. elife. 2015;4:1–12. https://doi.org/10.7554/eLife.05558.
Article
CAS
Google Scholar
Li L, Gainey MA, Goldbeck JE, Feldman DE. Rapid homeostasis by disinhibition during whisker map plasticity. Proc Natl Acad Sci. 2014;111:1616–21. https://doi.org/10.1073/pnas.1312455111.
Article
CAS
PubMed
Google Scholar
Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci. 2013;16:1662–70. https://doi.org/10.1038/nn.3544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfeffer CK. Inhibitory neurons: Vip cells hit the brake on inhibition. Curr Biol. 2014;24:R18–20. https://doi.org/10.1016/j.cub.2013.11.001Dispatch.
Article
CAS
PubMed
Google Scholar
Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ. The organization of two new cortical interneuronal circuits. Nat Neurosci. 2013;16:210–8.
Article
CAS
Google Scholar
Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci. 2010;30:16796–808. https://doi.org/10.1523/JNEUROSCI.1869-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheyltjens I, Vreysen S, van Den Haute C, Sabanov V, Balschun D, Baekelandt V, et al. Transient and localized optogenetic activation of somatostatin-interneurons in mouse visual cortex abolishes long-term cortical plasticity due to vision loss. Brain Structure and Function. 2018;223:1–23.
Article
Google Scholar
Rudy B, Fishell G, Lee S, Hjerling-Leffler J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol. 2011;71:45–61. https://doi.org/10.1002/dneu.20853.
Article
PubMed
PubMed Central
Google Scholar
Nys J, Smolders K, Laramée M-E, Hofman I, Hu T-T, Arckens L. Regional specificity of GABAergic regulation of cross-modal plasticity in mouse visual cortex after unilateral enucleation. J Neurosci. 2015;35:11174–89.
Article
CAS
Google Scholar
Lambe EK, Fillman SG, Webster MJ, Shannon WC. Serotonin receptor expression in human prefrontal cortex: balancing excitation and inhibition across postnatal development. PLoS One. 2011;6:e22799. https://doi.org/10.1371/journal.pone.0022799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreau WA, Amar M, Le Roux N, Morel N, Fossier P. Serotoninergic fine-tuning of the excitation-inhibition balance in rat visual cortical networks. Cereb Cortex. 2010;20:456–67.
Article
Google Scholar
Van Brussel L, Gerits A, Arckens L. Identification and localization of functional subdivisions in the visual cortex of the adult mouse. J Comp Neurol. 2009;514:107–16.
El Arfani A, Bentea E, Aourz N, Ampe B, De Deurwaerdère P, Van Eeckhaut A, et al. NMDA receptor antagonism potentiates the l-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats. Neuropharmacology. 2014;85:198–205.
Article
CAS
Google Scholar
Jardí F, Laurent MR, Kim N, Khalil R, De Bundel D, Van Eeckhaut A, et al. Testosterone boosts physical activity in male mice via dopaminergic pathways. Sci Rep. 2018;8:957.
Article
Google Scholar
Qu Y, Eysel UT, Vandesande F, Arckens L. Effect of partial sensory deprivation on monoaminergic neuromodulators in striate cortex of adult cat. Neuroscience. 2000;101:863–8.
Article
CAS
Google Scholar
Cliburn RA, Dunn AR, Stout KA, Hoffman CA, Lohr KM, Bernstein AI, et al. Immunochemical localization of vesicular monoamine transporter 2 (VMAT2) in mouse brain. J Chem Neuroanat. 2017;83–84:82–90.
Article
Google Scholar
Schafer MKH, Weihe E, Eiden LE. Localization and expression of vmat2 aross mammalian species. A translational guide for its visualization and targeting in health and disease. Adv Pharmacol. 2013;68:319–34.
Article
CAS
Google Scholar
Tong J, Boileau I, Furukawa Y, Chang L-J, Wilson AA, Houle S, et al. Distribution of vesicular monoamine transporter 2 protein in human brain: implications for brain imaging studies. J Cereb Blood Flow Metab. 2011;31:2065–75. https://doi.org/10.1038/jcbfm.2011.63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paxinos, G and Franklin KBJ. Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. 2012. https://www.elsevier.com/books/paxinos-and-franklins-the-mouse-brain-in-stereotaxic-coordinates/paxinos/978-0-12-391057-8.
Wakabayashi K, Narisawa-Saito M, Iwakura Y, Arai T, Ikeda K, Takahashi H, et al. Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer’s disease. Neurobiol Aging. 1999;20:287–95.
Article
CAS
Google Scholar
Van Damme K, Massie A, Vandesande F, Arckens L. Distribution of the AMPA2 glutamate receptor subunit in adult cat visual cortex. Brain Res. 2003;960:1–8.
Article
CAS
Google Scholar
Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ. The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods. 2008;172:250–4.
Article
CAS
Google Scholar
Hu TT, Van Den Bergh G, Thorrez L, Heylen K, Eysel UT, Arckens L. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone. Cereb Cortex. 2011;21:2883–92.
Article
Google Scholar
Kasamatsu T, Schmidt EK. Continuous and direct infusion of drug solutions in the brain of awake animals: implementation, strengths and pitfalls. Brain Res Protocol. 1997;1(1):57–69.
Article
CAS
Google Scholar
Dawson LA, Nguyen HQ, Smith DL, Schechter LE. Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol. 2002;16:145–52. https://doi.org/10.1177/026988110201600205.
Article
CAS
PubMed
Google Scholar
Abbas SY, Nogueira MI, Azmitia EC. Antagonist-induced increase in 5-HT1A-receptor expression in adult rat hippocampus and cortex. Synapse. 2007;61:531–9.
Article
CAS
Google Scholar
Persson B, Heykants J, Hedner T. Clinical pharmacokinetics of Ketanserin. Clin Pharmacokinet. 1991;20:263–79.
Article
CAS
Google Scholar
Gu Q, Singer W. Involvement of serotonin in developmental plasticity of kitten visual cortex. Eur J Neurosci. 1995;7:1146–53.
Article
CAS
Google Scholar
Lakoski JM, Aghajanian GK. Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphe nucleus. Neuropharmacology. 1985;24:265–73.
Article
CAS
Google Scholar
Jha S, Rajendran R, Fernandes KA, Vaidya VA. 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci Lett. 2008;441:210–4.
Article
CAS
Google Scholar
Ye J-H, Ponnudurai R, Schaefer R. Ondansetron: a selective 5-HT3 receptor antagonist and its applications in CNS-related disorders. CNS Drug Rev. 2006;7:199–213. https://doi.org/10.1111/j.1527-3458.2001.tb00195.x.
Article
Google Scholar
Woolley DG, Laeremans A, Gantois I, Mantini D, Vermaercke B, Op de Beeck HP, et al. Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proc Natl Acad Sci. 2013;110:3131–6. https://doi.org/10.1073/pnas.1217832110.
Article
PubMed
Google Scholar
Smolders K, Vreysen S, Laramée ME, Cuyvers A, Hu TT, Van Brussel L, et al. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system. Eur J Neurosci. 2016;44:2165–75.
Article
Google Scholar
Imbrosci B, Wang Y, Arckens L, Mittmann T. Neuronal mechanisms underlying transhemispheric diaschisis following focal cortical injuries. Brain Struct Funct. 2015;220:1649–64.
Article
Google Scholar
Arckens L, Van Der GE, Eysel UT, Orban GA, Vandesande F. Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. JComp Neurol. 2000;425:531–44.
Article
CAS
Google Scholar
Qu Y, Massie A, Van Der Gucht E, Cnops L, Vandenbussche E, Eysel UT, et al. Retinal lesions affect extracellular glutamate levels in sensory-deprived and remote non-deprived regions of cat area 17 as revealed by in vivo microdialysis. Brain Res. 2003;962:199–206.
Article
CAS
Google Scholar
Massie A, Cnops L, Jacobs S, Van Damme K, Vandenbussche E, Eysel UT, et al. Glutamate levels and transport in cat (Felis catus) area 17 during cortical reorganization following binocular retinal lesions. J Neurochem. 2003;84:1387–97.
Article
CAS
Google Scholar
Leysen I, Van Der Gucht E, Eysel UT, Huybrechts R, Vandesande F, Arckens L. Time-dependent changes in the expression of the MEF2 transcription factor family during topographic map reorganization in mammalian visual cortex. Eur J Neurosci. 2004;20:769–80.
Article
Google Scholar
Saffen DW, Cole AJ, Worley PF, Christy BA, Ryder K, Baraban JM. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci U S A. 1988;85:7795–9. https://doi.org/10.1073/pnas.85.20.7795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM. Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci. 1991;88:5106–10. https://doi.org/10.1073/pnas.88.12.5106.
Article
CAS
PubMed
Google Scholar
Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 1989;340:474–6. https://doi.org/10.1038/340474a0.
Article
CAS
PubMed
Google Scholar
Chaudhuri A, Matsubara JA, Cynader MS. Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268. Vis Neurosci. 1995;12:35–50. https://doi.org/10.1017/S095252380000729X.
Article
CAS
PubMed
Google Scholar
Kaczmarek L, Chaudhuri A. Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev. 1997;23:237–56.
Article
CAS
Google Scholar
Arckens L, Zhang F, Vanduffel W, Mailleux P, Vanderhaeghen JJ, Orban GA, et al. Localization of the two protein kinase C beta-mRNA subtypes in cat visual system. J Chem Neuroanat. 1995;8:117–24. 7598812.
Article
CAS
Google Scholar
Van Der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L. Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex. 2007;17:2805–19.
Article
Google Scholar
Giulietti M, Vivenzio V, Piva F, Principato G, Bellantuono C, Nardi B. How much do we know about the coupling of G-proteins to serotonin receptors? Molecular Brain. 2014;7:49.
Article
Google Scholar
Derkach V, Surprenant A, North RA. 5-HT3 receptors are membrane ion channels. Nature. 1989;339:706–9.
Article
CAS
Google Scholar
Albert PR, Vahid-Ansari F, Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci. 2014;8. https://doi.org/10.3389/fnbeh.2014.00199.
Leonard BE. Serotonin receptors and their function in sleep, anxiety disorders and depression. Psychother Psychosom. 1996;65:66–75.
Article
CAS
Google Scholar
Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev. 2015;51:164–88.
Article
CAS
Google Scholar
Wainwright SR, Galea LAM. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and psa-ncam within the hippocampus. Neural Plasticity. 2013;2013:805497.
Article
Google Scholar
Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W, et al. The role of neural plasticity in depression: from Hippocampus to prefrontal cortex. Neural Plasticity. 2017;2017:6871089.
PubMed
PubMed Central
Google Scholar
Castrén E. Is mood chemistry? Nat Rev Neurosci. 2005;6:241–6. https://doi.org/10.1038/nrn1629.
Article
CAS
PubMed
Google Scholar
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.
Article
CAS
Google Scholar
Ruiz-Perera L, Muniz M, Vierci G, Bornia N, Baroncelli L, Sale A, et al. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex. Sci Rep. 2015;5:12517.
Article
CAS
Google Scholar
Guirado R, Perez-Rando M, Sanchez-Matarredona D, Castrén E, Nacher J. Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons. Int J Neuropsychopharmacol. 2014;17:1635–46. https://doi.org/10.1017/S1461145714000406.
Article
CAS
PubMed
Google Scholar
Tiraboschi E, Guirado R, Greco D, Auvinen P, Maya-Vetencourt JF, Maffei L, et al. Gene expression patterns underlying the reinstatement of plasticity in the adult visual system. Neural Plast. 2013;2013:605079.
Article
Google Scholar
Héry F, Ternaux JP. Regulation of release processes in central serotoninergic neurons. J Physiol Paris. 1981;77:287–301.
PubMed
Google Scholar
Fagiolini M, Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex. Nature. 2000;404:183–6.
Article
CAS
Google Scholar
Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008;135:422–35. https://doi.org/10.1016/j.cell.2008.10.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang HJ, Cho KH, Joo K, Kim MJ, Rhie DJ. Differential modulation of phasic and tonic inhibition underlies serotonergic suppression of long-term potentiation in the rat visual cortex. Neuroscience. 2015;301:351–62.
Article
CAS
Google Scholar
Joo K, Yoon SH, Rhie DJ, Jang HJ. Phasic and tonic inhibition are maintained respectively by CaMKII and PKA in the rat visual cortex. Korean J Physiol Pharmacol. 2014;18:517–24.
Article
CAS
Google Scholar
Connelly WM, Fyson SJ, Errington AC, McCafferty CP, Cope DW, Di Giovanni G, et al. GABAB Receptors Regulate Extrasynaptic GABAA Receptors. J Neurosci. 2013;33:3780–5.
Article
CAS
Google Scholar
Iwai Y, Fagiolini M, Obata K, Hensch TK. Rapid critical period induction by tonic inhibition in visual cortex. J Neurosci. 2003;23:6695–702.
Article
CAS
Google Scholar
Wang J-W, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci. 2008;28:1374–84. https://doi.org/10.1523/JNEUROSCI.3632-07.2008.
Article
CAS
PubMed
Google Scholar
Mcavoy K, Russo C, Kim S, Rankin G, Sahay A. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age. Hippocampus. 2015;25:1429–46.
Article
CAS
Google Scholar
Normann C, Schmitz D, Fürmaier A, Döing C, Bach M. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry. 2007;62:373–80.
Article
Google Scholar
Gore C, Wu C. Medical therapies of amblyopia: translational research to expand our treatment armamentarium. Semin Ophthalmol. 2016;31:155–8. https://doi.org/10.3109/08820538.2015.1114851.
Article
PubMed
Google Scholar
Beshara S, Beston BR, Pinto JGA, Murphy KM. Effects of fluoxetine and visual experience on glutamatergic and GABAergic synaptic proteins in adult rat visual cortex. eNeuro. 2016;2. https://doi.org/10.1523/ENEURO.0126-15.2015.
Fu Y, Kaneko M, Tang Y, Alvarez-Buylla A, Stryker MP. A cortical disinhibitory circuit for enhancing adult plasticity. elife. 2015;2015:e05558.
Article
Google Scholar
Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–4. https://doi.org/10.1038/nature12676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acsády L, Görcs TJ, Freund TF. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience. 1996;73:317–34.
Article
Google Scholar
Dávid C, Schleicher A, Zuschratter W, Staiger JF. The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat. Eur J Neurosci. 2007;25:2329–40.
Article
Google Scholar
Heimler B, Weisz N, Collignon O. Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience. 2014;283:44–63.
Article
CAS
Google Scholar
Lee DS, Lee JS, Oh SH, Kim SK, Kim JW, Chung JK, et al. Cross-modal plasticity and cochlear implants. Nature. 2001;409:149–50. https://doi.org/10.1038/35051653.
Article
CAS
PubMed
Google Scholar
Stropahl M, Debener S. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration. NeuroImage Clin. 2017;16:514–23.
Article
Google Scholar
Lee HJ, Giraud AL, Kang E, Oh SH, Kang H, Kim CS, et al. Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex. 2007;17(4):909–17.
Article
Google Scholar
Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2014;1595:51–73. https://doi.org/10.1016/j.brainres.2014.11.020.
Article
CAS
PubMed
Google Scholar
Dobelle WH, Mladejovsky MG, Girvin JP. Artificial Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis. Science. 1974;183:440–4. https://doi.org/10.1126/science.183.4123.440.
Article
CAS
PubMed
Google Scholar
Walter P. Visual prostheses. Ophthalmologe. 2016;113:175–89. https://doi.org/10.1007/s00347-015-0202-8.
Article
CAS
PubMed
Google Scholar
Shepherd RK, Shivdasani MN, Nayagam DAX, Williams CE, Blamey PJ. Visual prostheses for the blind. Trends Biotechnol. 2013;31:562–71.
Article
CAS
Google Scholar
Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, et al. Retinal prosthesis for the blind. Surv Ophthalmol. 2002;47:335–56.
Article
Google Scholar
Dobkin BH. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. In: J Physiol. 2007;579:p. 637–642.
Article
CAS
Google Scholar
Grosse-Wentrup M, Mattia D, Oweiss K. Using brain-computer interfaces to induce neural plasticity and restore function. In: J Neural Eng. 2011;8(2):025004.
Article
Google Scholar
Rossini PM, Noris Ferilli MA, Ferreri F. Cortical plasticity and brain computer interface. Eur J Phys Rehabil Med. 2012;48:307–12.
CAS
PubMed
Google Scholar
Maya-Vetencourt JF, Ghezzi D, Antognazza MR, Colombo E, Mete M, Feyen P, et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat Mater. 2017;16(6):681–9.
Article
CAS
Google Scholar
Gerding H, Benner FP, Taneri S. Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit. J Neural Eng. 2007;4(1):S38–49.
Article
CAS
Google Scholar
Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins TI, et al. Photovoltaic retinal prosthesis with high pixel density. Nat Photonics. 2012;6(6):391–7.
Article
CAS
Google Scholar
Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DAX, Sinclair NC, et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One. 2014;9(12):e115239.
Article
Google Scholar
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits. 2018;12:51.