Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K, et al. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci U S A. 2010;107:332–7.
Article
CAS
PubMed
Google Scholar
Koike C, Numata T, Ueda H, Mori Y, Furukawa T. TRPM1: A vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium. 2010;48:95–101.
Article
CAS
PubMed
Google Scholar
Nakamura M, Sanuki R, Yasuma TR, Onishi A, Nishiguchi KM, Koike C, et al. TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis. 2010;16:425–37.
CAS
PubMed
PubMed Central
Google Scholar
Kniffin CL. CHROMOSOME 15q13.3 DELETION SYNDROME. In: Online Mendelian Inheritance in Man [Internet]. Johns Hopkins Univ. [cited 2020 Nov 19]. Available from: https://www.omim.org/entry/612001
Bon BW van, Mefford HC, Vries BB de. 15q13.3 Microdeletion. In:National Center for Biotechnology Information [Internet]. Univ. Washingt. [cited 2021 Jan 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK50780/
Spielmann M, Reichelt G, Hertzberg C, Trimborn M, Mundlos S, Horn D, et al. Homozygous deletion of chromosome 15q13.3 including CHRNA7 causes severe mental retardation, seizures, muscular hypotonia, and the loss of KLF13 and TRPM1 potentially cause macrocytosis and congenital retinal dysfunction in siblings. Eur J Med Genet. Elsevier Masson SAS; 2011;54:e441–5.
Simon J, Stoll K, Fick R, Mott J, Lawson-Yuen A. Homozygous 15q13.3 microdeletion in a child with hypotonia and impaired vision: A new report and review of the literature. Clin Case Reports. 2019;7:2311–5.
Masurel-Paulet A, Drumare I, Holder M, Cuisset JM, Vallée L, Defoort S, et al. Further delineation of eye manifestations in homozygous 15q13.3 microdeletions including TRPM1: A differential diagnosis of ceroid lipofuscinosis. Am J Med Genet Part A. 2014;164:1537–44.
Liao J, Deward SJ, Madan-Khetarpal S, Surti U, Hu J. A small homozygous microdeletion of 15q13.3 including the CHRNA7 gene in a girl with a spectrum of severe neurodevelopmental features. Am J Med Genet Part A. 2011;155:2795–800.
LePichon JB, Bittel DC, Graf WD, Yu S. A 15q13.3 homozygous microdeletion associated with a severe neurodevelopmental disorder suggests putative functions of the TRPM1, CHRNA7, and other homozygously deleted genes. Am J Med Genet Part A. 2010;152:1300–4.
15q13.3 microdeletion syndrome. In: Genetic and Rare Diseases Information Center [Internet]. Natl. Inst. Heal. [cited 2020 Nov 19]. Available from: https://rarediseases.info.nih.gov/diseases/10296/15q133-microdeletion-syndrome
Yin J, Chen W, Yang H, Xue M, Schaaf CP. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes. Sci Rep. 2017;7:1–10.
Article
CAS
Google Scholar
Lowther C, Costain G, Stavropoulos DJ, Melvin R, Silversides CK, Andrade DM, et al. Delineating the 15q13.3 microdeletion phenotype: A case series and comprehensive review of the literature. Genet Med. 2015;17:149–57.
Yin J, Chen W, Chao ES, Soriano S, Wang L, Wang W, et al. Otud7a Knockout Mice Recapitulate Many Neurological Features of 15q13.3 Microdeletion Syndrome. Am J Hum Genet. ElsevierCompany.; 2018;102:296–308.
Xu Y, Dhingra A, Fina ME, Koike C, Furukawa T, Vardi N. mGluR6 deletion renders the TRPM1 channel in retina inactive. J Neurophysiol. 2012;107:948–57.
Article
CAS
PubMed
Google Scholar
Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene. Cell. 1995;80:757–65.
Article
CAS
PubMed
Google Scholar
Takeuchi H, Horie S, Moritoh S, Matsushima H, Hori T, Kimori Y, et al. Different Activity Patterns in Retinal Ganglion Cells of TRPM1 and mGluR6 Knockout Mice. Biomed Res Int. 2018;2018:1–6.
Article
CAS
Google Scholar
Takao K, Miyakawa T. Investigating gene-to-behavior pathways in psychiatric disorders: The use of a comprehensive behavioral test battery on genetically engineered mice. Ann N Y Acad Sci. Blackwell Publishing Inc.; 2006;1086:144–59.
Yamashita N, Takahashi A, Takao K, Yamamoto T, Kolattukudy P, Miyakawa T, et al. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition. Front Behav Neurosci. 2013;7:1–10.
Article
CAS
Google Scholar
Takao K, Miyakawa T. Light/dark Transition Test for Mice JoVE. 2006;1:1–3.
Google Scholar
Shibasaki K, Sugio S, Takao K, Yamanaka A, Miyakawa T, Tominaga M, et al. TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch Eur J Physiol. 2015;467:2495–507.
Article
CAS
Google Scholar
Fujioka R, Nii T, Iwaki A, Shibata A, Ito I, Kitaichi K, et al. Comprehensive behavioral study of mGluR3 knockout mice: Implication in schizophrenia related endophenotypes. Mol Brain. 2014;7:1–18.
Article
CAS
Google Scholar
Ageta-Ishihara N, Yamakado H, Morita T, Hattori S, Takao K, Miyakawa T, et al. Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson’s disease, causes behavioral alterations but not neurodegeneration in mice. Mol Brain. 2013;6:1–14.
Article
CAS
Google Scholar
Koshimizu H, Takao K, Matozaki T, Ohnishi H, Miyakawa T. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice. PLoS ONE. 2014;9:1–12.
Article
CAS
Google Scholar
Tamada K, Tomonaga S, Hatanaka F, Nakai N, Takao K, Miyakawa T, et al. Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling. PLoS ONE. 2010;5:1–11.
Article
CAS
Google Scholar
Dalrymple RA, McKenna Maxwell L, Russell S, Duthie J. NICE guideline review: Attention deficit hyperactivity disorder: diagnosis and management (NG87). Arch Dis Child - Educ Pract. 2020;105:289–93.
Article
Google Scholar
de la Peña JB, dela Peña IJ, Custodio RJ, Botanas CJ, Kim HJ, Cheong JH. . Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD). Mol Neurobiol Molecular Neurobiology. 2018;55:3739–54.
PubMed
Google Scholar
Liu GX, Cai GQ, Cai YQ, Sheng ZJ, Jiang J, Mei Z, et al. Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology. 2007;32:1531–9.
Article
CAS
PubMed
Google Scholar
Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron. 1998;20:1093–102.
Article
CAS
PubMed
Google Scholar
Masurel-Paulet A, Andrieux J, Callier P, Cuisset JM, Le Caignec C, Holder M, et al. Delineation of 15q13.3 microdeletions. Clin Genet. 2010;78:149–61.
Pagnamenta AT, Wing K, Akha ES, Knight SJL, Bölte S, Schmötzer G, et al. A 15q13.3 microdeletion segregating with autism. Eur J Hum Genet. 2009;17:687–92.
Alsagob M, Salih MA, Hamad MHA, Al-Yafee Y, Al-Zahrani J, Al-Bakheet A, et al. First report of two successive deletions on chromosome 15q13 cytogenetic bands in a boy and girl: Additional data to 15q13.3 syndrome with a report of high IQ patient. Mol Cytogenet. Molecular Cytogenetics; 2019;12:1–6.
Hoppman-Chaney N, Wain K, Seger PR, Superneau DW, Hodge JC. Identification of single gene deletions at 15q13.3: Further evidence that CHRNA7 causes the 15q13.3 microdeletion syndrome phenotype. Clin Genet. 2013;83:345–51.
Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet. 2008;40:322–8.
Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C, et al. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders David. J Med Genet. 2009;46:242–8.
Van Bon BWM, Mefford HC, Menten B, Koolen DA, Sharp AJ, Nillesen WM, et al. Further delineation of the 15q13 microdeletion and duplication syndromes: A clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet. 2009;46:511–23.
Article
PubMed
Google Scholar
Popovici C, Busa T, Missirian C, Milh M, Moncla A, Philip N. Mosaic 15q13.3 deletion including CHRNA7 gene in monozygotic twins. Eur J Med Genet. Elsevier Masson SAS; 2013;56:274–7.
Park S, Kim B-N, Cho S-C, Kim J-W, Shin M-S, Yoo H-J, et al. Baseline Severity of Parent-Perceived Inattentiveness Is Predictive of the Difference Between Subjective and Objective Methylphenidate Responses in Children with Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol. 2013;23:410–4.
Article
CAS
PubMed
Google Scholar
de Sonneville LMJ, Njiokiktjien C, Bos H. Methylphenidate and information processing. part 1: Differentiation between responders and nonresponders; part 2: Efficacy in responders. J Clin Exp Neuropsychol. Routledge; 1994;16:877–97.
Li Y, Yin A, Sun X, Zhang M, Zhang J, Wang P, et al. Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. J Clin Invest. 2017;127:4270–84.
Article
PubMed
PubMed Central
Google Scholar
Ey E, Torquet N, de Chaumont F, Lévi-Strauss J, Ferhat AT, Le Sourd AM, et al. Shank2 Mutant Mice Display Hyperactivity Insensitive to Methylphenidate and Reduced Flexibility in Social Motivation, but Normal Social Recognition. Front Mol Neurosci. Frontiers Media S.A.; 2018;11:365.
Wrenn CC, Heitzer AM, Roth AK, Nawrocki L, Valdovinos MG. Effects of clonidine and methylphenidate on motor activity in Fmr1 knockout mice. Neurosci Lett Elsevier Ireland Ltd. 2015;585:109–13.
Article
CAS
Google Scholar
Forsingdal A, Fejgin K, Nielsen V, Werge T, Nielsen J. 15Q13.3 Homozygous Knockout Mouse Model Display Epilepsy-, Autism-and Schizophrenia-Related Phenotypes. Transl Psychiatry. Nature Publishing Group; 2016;6:1–9.
Iwakabe H, Katsuura G, Ishibashi C, Nakanishi S. Impairment of pupillary responses and optokinetic nystagmus in the mGluR6-deficient mouse. Neuropharmacology Pergamon. 1997;36:135–43.
Article
CAS
Google Scholar
Ueda Y, Tammitsu N, Imai H, Honda Y, Shichida Y. Recovery of rod-mediated a-wave during light-adaptation in mGluR6-deficient mice. Vision Res. 2006;46:1655–64.
Article
PubMed
Google Scholar
Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS, Duvoisin RM, et al. TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci U S A. 2009;106:19174–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kupers R, Ptito M. Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev Elsevier Ltd. 2014;41:36–52.
Article
Google Scholar
Slimani H, Danti S, Ptito M, Kupers R. Pain perception is increased in congenital but not late onset blindness. PLoS ONE. 2014;9:1–6.
Article
CAS
Google Scholar
Li Y, Hu X, Yu Y, Zhao K, Saalmann YB, Wang L. Feedback from human posterior parietal cortex enables visuospatial category representations as early as primary visual cortex. Brain Behav. 2018;8:1–15.
Google Scholar
Touj S, Tokunaga R, Al Aïn S, Bronchti G, Piché M. Pain Hypersensitivity is Associated with Increased Amygdala Volume and c-Fos Immunoreactivity in Anophthalmic Mice. Neuroscience. 2019;418:37–49.
Article
CAS
PubMed
Google Scholar
Rauschecker JP, Tian B, Korte M, Egert U. Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals. Proc Natl Acad Sci U S A. 1992;89:5063–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noppeney U. The effects of visual deprivation on functional and structural organization of the human brain. Neurosci Biobehav Rev. 2007;31:1169–80.
Article
PubMed
Google Scholar
Cecchetti L, Ricciardi E, Handjaras G, Kupers R, Ptito M, Pietrini P. Congenital blindness affects diencephalic but not mesencephalic structures in the human brain. Brain Struct Funct. Springer Berlin Heidelberg; 2016;221:1465–80.
Chebat DR, Schneider FC, Ptito M. Neural Networks Mediating Perceptual Learning in Congenital Blindness. Sci Rep. Springer US; 2020;10:1–10.
Ptito M, Schneider FCG, Paulson OB, Kupers R. Alterations of the visual pathways in congenital blindness. Exp Brain Res. 2008;187:41–9.
Article
PubMed
Google Scholar
Petrus E, Isaiah A, Jones AP, Li D, Wang H, Lee HK, et al. Crossmodal Induction of Thalamocortical Potentiation Leads to Enhanced Information Processing in the Auditory Cortex. Neuron. Elsevier Inc.; 2014;81:664–73.
Larsen DLD, Luu JD, Burns ME, Krubitzer L. What are the effects of severe visual impairment on the cortical organization and connectivity of primary visual cortex? Front Neuroanat. 2009;3:1–16.
Google Scholar
Hikishima K, Komaki Y, Seki F, Ohnishi Y, Okano HJ, Okano H. In vivo microscopic voxel-based morphometry with a brain template to characterize strainspecific structures in the mouse brain. Sci Rep. Springer US; 2017;7:1–9.
Klinge C, Eippert F, Röder B, Büchel C. Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind. J Neurosci. 2010;30:12798–805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB. A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions. Neuron. Elsevier Inc.; 2017;95:1420–32.
Pakan JM, Francioni V, Rochefort NL. Action and learning shape the activity of neuronal circuits in the visual cortex. Curr Opin Neurobiol The Authors. 2018;52:88–97.
Article
CAS
Google Scholar
Hishida R, Horie M, Tsukano H, Tohmi M, Yoshitake K, Meguro R, et al. Feedback inhibition derived from the posterior parietal cortex regulates the neural properties of the mouse visual cortex. Eur J Neurosci. 2019;50:2970–87.
Article
PubMed
Google Scholar
Wittenberg GF, Werhahn KJ, Wassermann EM, Herscovitch P, Cohen LG. Functional connectivity between somatosensory and visual cortex in early blind humans. Eur J Neurosci. 2004;20:1923–7.
Article
PubMed
Google Scholar
Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci. 2012;53:2921–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T. Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci. 2010;4:1–12.
Google Scholar
Oancea E, Vriens J, Brauchi S, Jun J, Splawski I, Clapham DE. TRPM1 forms ion channels associated with melanin content in melanocytes. Sci Signal. 2009;2:1–11.
Article
Google Scholar
Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, et al. Recessive Mutations of the Gene TRPM1 Abrogate ON Bipolar Cell Function and Cause Complete Congenital Stationary Night Blindness in Humans. Am J Hum Genet. The American Society of Human Genetics; 2009;85:711–9.
Klooster J, Blokker J, ten Brink JB, Unmehopa U, Fluiter K, Bergen AAB, et al. Ultrastructural localization and expression of TRPM1 in the human retina. Investig Ophthalmol Vis Sci. 2011;52:8356–62.
Article
CAS
Google Scholar
Gebhardt C, von Bohlen und Halbach O, Hadler MD, Harteneck C, Albrecht D. A novel form of capsaicin-modified amygdala LTD mediated by TRPM1. Neurobiol Learn Mem. Elsevier Inc.; 2016;136:1–12.