Querfurth HW, LaFerla FM. Mechanisms of disease. N Engl J Med. 2010;362:329–44.
Article
CAS
PubMed
Google Scholar
Nelson PT, Jicha GA, Schmitt FA, Liu H, Davis DG, Mendiondo MS, et al. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles" do count" when staging disease severity. J Neuropathol Exp Neurol. 2007;66:1136–46.
Article
PubMed
Google Scholar
Leissring MA, Yamasaki TR, Wasco W, Buxbaum JD, Parker I, LaFerla FM. Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc Natl Acad Sci USA. 2000;97:8590–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leissring MA, LaFerla FM, Callamaras N, Parker I. Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. Neurobiol Dis. 2001;8:469–78.
Article
CAS
PubMed
Google Scholar
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27:663–77.
Article
PubMed
Google Scholar
Wong PC, Cai H, Borchelt DR, Price DL. Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci. 2002;5:633–9.
Article
CAS
PubMed
Google Scholar
Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA. 2002;288:1475–83.
Article
PubMed
Google Scholar
Zhao Q-F, Tan L, Wang H-F, Jiang T, Tan M-S, Tan L, et al. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J Affect Disord. 2016;190:264–71.
Article
PubMed
Google Scholar
Jessen F, Kucharski C, Fries T, Papassotiropoulos A, Hoenig K, Maier W, et al. Sensory gating deficit expressed by a disturbed suppression of the P50 event-related potential in patients with Alzheimer’s disease. Am J Psychiatry. 2001;158:1319–21.
Article
CAS
PubMed
Google Scholar
Ueki A, Goto K, Sato N, Iso H, Morita Y. Prepulse inhibition of acoustic startle response in mild cognitive impairment and mild dementia of Alzheimer type. Psychiatry Clin Neurosci. 2006;60:55–62.
Article
PubMed
Google Scholar
Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;3:155–75.
Article
CAS
Google Scholar
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006;26:10129–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.
Article
CAS
PubMed
Google Scholar
Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000;25:402–5.
Article
CAS
PubMed
Google Scholar
Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging. 2012;33:196.e29-196.e40.
Article
CAS
Google Scholar
O’Leary TP, Shin S, Fertan E, Dingle RN, Almuklass A, Gunn RK, et al. Reduced acoustic startle response and peripheral hearing loss in the 5xFAD mouse model of Alzheimer’s disease. Genes, Brain Behav. 2017;16:554–63.
Article
CAS
Google Scholar
Lim J, Balastik M, Lee TH, Nakamura K, Liou YC, Sun A, et al. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J Clin Invest. 2008;118:1877–89.
CAS
PubMed
PubMed Central
Google Scholar
Miyasaka T, Morishima-Kawashima M, Ravid R, Kamphorst W, Nagashima K, Ihara Y. Selective deposition of mutant tau in the FTDP-17 brain affected by the P301L mutation. J Neuropathol Exp Neurol. 2001;60:872–84.
Article
CAS
PubMed
Google Scholar
Kang S, Kim J, Chang K-A. Spatial memory deficiency early in 6xTg Alzheimer’s disease mouse model. Sci Rep. 2021;11:1–15.
CAS
Google Scholar
Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Franke TF, Cain P, et al. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun. 2014;2:1–14.
Google Scholar
Lin Y, Rajamohamedsait HB, Sandusky-Beltran LA, Gamallo-Lana B, Mar A, Sigurdsson EM. Chronic PD-1 checkpoint blockade does not affect cognition or promote tau clearance in a tauopathy mouse model. Front Aging Neurosci. 2020;11:1–7.
Article
CAS
Google Scholar
Insausti R, Amaral DG. Hippocampal formation. Hum Nerv Syst. 2004;2:871–914.
Article
Google Scholar
Cook MN, Williams RW, Flaherty L. Anxiety-related behaviors in the elevated zero-maze are affected by genetic factors and retinal degeneration. Behav Neurosci. 2001;115:468–76.
Article
CAS
PubMed
Google Scholar
Morgan D, Munireddy S, Alamed J, DeLeon J, Diamond DM, Bickford P, et al. Apparent behavioral benefits of tau overexpression in P301L tau transgenic mice. J Alzheimer’s Dis. 2008;15:605–14.
Article
CAS
Google Scholar
Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology. 2001;156:194–215.
Article
CAS
PubMed
Google Scholar
Goto K, Ueki A, Iso H, Morita Y. Reduced prepulse inhibition in rats with entorhinal cortex lesions. Behav Brain Res. 2002;134:201–7.
Article
PubMed
Google Scholar
Fanselow MS, Dong H-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dafsari FS, Jessen F. Depression—an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl Psychiatry. 2020;10:1–13.
Article
Google Scholar
Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, et al. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun. 2020;11:1–15.
Article
CAS
Google Scholar
Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1 neurons store social memory. Science. 2016;353:1536–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masurkar AV. Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer’s disease across anatomical axes. J Alzheimer’s Dis Park. 2018;8:1–9.
Google Scholar
Bodea LG, Evans HT, Van der Jeugd A, Ittner LM, Delerue F, Kril J, et al. Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell. 2017;16:377–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook C, Kang SS, Carlomagno Y, Lin WL, Yue M, Kurti A, et al. Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model. Hum Mol Genet. 2015;24:6198–212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koss DJ, Robinson L, Drever BD, Plucińska K, Stoppelkamp S, Veselcic P, et al. Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology. Neurobiol Dis. 2016;91:105–23.
Article
CAS
PubMed
Google Scholar
Li X, Wang Z, Tan L, Wang Y, Lu C, Chen R, et al. Correcting miR92a-vGAT-mediated GABAergic dysfunctions rescues human tau-induced anxiety in mice. Mol Ther. 2017;25:140–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenmann H, Grigoriadis N, Eldar-Levy H, Avital A, Rozenstein L, Touloumi O, et al. A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Exp Neurol. 2008;212:71–84.
Article
CAS
PubMed
Google Scholar
Schindowski K, Bretteville A, Leroy K, Bégard S, Brion JP, Hamdane M, et al. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol. 2006;169:599–616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Egashira N, Iwasaki K, Takashima A, Watanabe T, Kawabe H, Matsuda T, et al. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice. Brain Res. 2005;1059:7–12.
Article
CAS
PubMed
Google Scholar
Jang HC, Ryu JH, Shin KM, Seo N, Kim GH, Huh YH, et al. Gait ignition failure in JNPL3 human tau-mutant mice. Exp Neurobiol. 2019;28:404–13.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Smith K, Pearson M, Hughes A, Cosden ML, Marcus J, et al. Early intervention of tau pathology prevents behavioral changes in the rTg4510 mouse model of tauopathy. PLoS ONE. 2018;13:183.
Google Scholar
Kambe T, Motoi Y, Inoue R, Kojima N, Tada N, Kimura T, et al. Differential regional distribution of phosphorylated tau and synapse loss in the nucleus accumbens in tauopathy model mice. Neurobiol Dis. 2011;42:404–14.
Article
CAS
PubMed
Google Scholar
Pennanen L, Wolfer DP, Nitsch RM, Götz J. Impaired spatial reference memory and increased exploratory behavior in P301L tau transgenic mice. Genes Brain Behav. 2006;5:369–79.
Article
CAS
PubMed
Google Scholar
Przybyla M, Stevens CH, van der Hoven J, Harasta A, Bi M, Ittner A, et al. Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neurosci Lett. 2016;631:24–9.
Article
CAS
PubMed
Google Scholar
Takeuchi H, Iba M, Inoue H, Higuchi M, Takao K, Tsukita K, et al. P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating. PLoS ONE. 2011;6:21050.
Article
CAS
Google Scholar
Watt G, Przybyla M, Zak V, van Eersel J, Ittner A, Ittner LM, et al. Novel behavioural characteristics of male human P301S mutant tau transgenic mice—a model for tauopathy. Neuroscience. 2020;431:166–75.
Article
CAS
PubMed
Google Scholar
Wobst HJ, Denk F, Oliver PL, Livieratos A, Taylor TN, Knudsen MH, et al. Increased 4R tau expression and behavioural changes in a novel MAPT-N296H genomic mouse model of tauopathy. Sci Rep. 2017;7:1–14.
Article
CAS
Google Scholar
Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91.
Article
PubMed
Google Scholar
West MJ. Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging. 1993;14:287–93.
Article
CAS
PubMed
Google Scholar
Guo C, Zhang S, Li J-Y, Ding C, Yang Z-H, Chai R, et al. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model. Sci Rep. 2016;6:1–14.
CAS
Google Scholar
Pietropaolo S, Delage P, Lebreton F, Crusio WE, Cho YH. Early development of social deficits in APP and APP-PS1 mice. Neurobiol Aging. 2012;33:1002.
Article
PubMed
CAS
Google Scholar
Kosel F, Munoz PT, Yang JR, Wong AA, Franklin TB. Age-related changes in social behaviours in the 5xFAD mouse model of Alzheimer’s disease. Behav Brain Res. 2019;362:160–72.
Article
CAS
PubMed
Google Scholar
Wang Y, Guan X, Chen X, Cai Y, Ma Y, Ma J, et al. Choline supplementation ameliorates behavioral deficits and Alzheimer’s disease-like pathology in transgenic APP/PS1 mice. Mol Nutr Food Res. 2019;63:1801407.
Article
CAS
Google Scholar
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav. 2014;135:25–33.
Article
CAS
PubMed
Google Scholar
Hong X, Liu J, Zhu G, Zhuang Y, Suo H, Wang P, et al. Parkin overexpression ameliorates hippocampal long-term potentiation and β-amyloid load in an Alzheimer’s disease mouse model. Hum Mol Genet. 2014;23:1056–72.
Article
CAS
PubMed
Google Scholar
Filali M, Lalonde R, Rivest S. Cognitive and non-cognitive behaviors in an APPswe/PS1 bigenic model of Alzheimer’s disease. Genes Brain Behav. 2009;8:143–8.
Article
CAS
PubMed
Google Scholar
Yamazaki H, Jin Y, Tsuchiya A, Kanno T, Nishizaki T. Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer’s disease. Neurosci Lett. 2015;609:53–7.
Article
CAS
PubMed
Google Scholar
Buccafusco JJ. Methods of behavior analysis in neuroscience. Methods Behav Anal Neurosci. 2000.
Finn DA, Rutledge-Gorman MT, Crabbe JC. Genetic animal models of anxiety. Neurogenetics. 2003;4:109–35.
Article
PubMed
Google Scholar
S S, GBW S. Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev. 2007
Callahan BL, Bierstone D, Stuss DT, Black SE. Adult ADHD: risk factor for dementia or phenotypic mimic? Front Aging Neurosci. 2017;9.
Fluegge K, Fluegge K. Antecedent ADHD, dementia, and metabolic dysregulation: a U.S. based cohort analysis. Neurochem Int. 2018;112:255–8.
Article
CAS
PubMed
Google Scholar
Zhang L, Du Rietz E, Kuja-Halkola R, Dobrosavljevic M, Johnell K, Pedersen NL, et al. Attention-deficit/hyperactivity disorder and Alzheimer’s disease and any dementia: a multi-generation cohort study in Sweden. Alzheimer’s Dement. 2021
Lalonde R, Kim HD, Fukuchi K. Exploratory activity, anxiety, and motor coordination in bigenic APPswe + PS1/ΔE9 mice. Neurosci Lett. 2004;369:156–61.
Article
CAS
PubMed
Google Scholar
Pairojana T, Phasuk S, Suresh P, Huang SP, Pakaprot N, Chompoopong S, et al. Age and gender differences for the behavioral phenotypes of 3xTg Alzheimer’s disease mice. Brain Res. 2021;1762:147437.
Article
CAS
PubMed
Google Scholar
Cho C, Lee S, Kim A, Yarishkin O, Ryoo K, Lee Y, et al. TMEM16A expression in cholinergic neurons of the medial habenula mediates anxiety-related behaviors. EMBO Rep. 2020;21:48097.
Article
CAS
Google Scholar
Faizi M, Bader PL, Saw N, Nguyen TV, Beraki S, Wyss-Coray T, et al. Thy1-hAPPLond/Swe+ mouse model of Alzheimer’s disease displays broad behavioral deficits in sensorimotor, cognitive and social function. Brain Behav. 2012;2:142–54.
Article
PubMed
PubMed Central
Google Scholar