Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968–71.
Article
CAS
Google Scholar
Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci USA. 2001;98(14):8077–82.
Article
CAS
Google Scholar
LaGraize SC, Borzan J, Peng YB, Fuchs PN. Selective regulation of pain affect following activation of the opioid anterior cingulate cortex system. Exp Neurol. 2006;197(1):22–30.
Article
CAS
Google Scholar
Melzack R, MCasey KL. Sensory, motivational, and central control determinants of pain: a new conceptual model. Skin Senses. 1968;1:423–43.
Google Scholar
Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.
Article
CAS
Google Scholar
Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci. 2012;15(8):1117–9.
Article
CAS
Google Scholar
Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med. 2013;368(15):1388–97.
Article
CAS
Google Scholar
Tracey I, Johns E. The pain matrix: reloaded or reborn as we image tonic pain using arterial spin labelling. Pain. 2010;148(3):359–60.
Article
Google Scholar
Schweinhardt P, Bushnell MC. Neuroimaging of pain: insights into normal and pathological pain mechanisms. Neurosci Lett. 2012;520(2):129–30.
Article
CAS
Google Scholar
Brown JE, Chatterjee N, Younger J, Mackey S. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation. PLoS ONE. 2011;6(9): e24124.
Article
CAS
Google Scholar
Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, et al. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci USA. 2012;109(50):20709–13.
Article
CAS
Google Scholar
Johansen JP, Fields HL. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat Neurosci. 2004;7(4):398–403.
Article
CAS
Google Scholar
Zhang Q, Manders T, Tong AP, Yang R, Garg A, Martinez E, et al. Chronic pain induces generalized enhancement of aversion. Elife. 2017;6:e25302.
Article
Google Scholar
Zhou H, Zhang Q, Martinez E, Dale J, Hu S, Zhang E, et al. Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat Commun. 2018;9(1):3751.
Article
Google Scholar
Hu S, Zhang Q, Wang J, Chen Z. Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity. J Neurophysiol. 2018;119(4):1394–410.
Article
Google Scholar
Chen Z, Zhang Q, Tong AP, Manders TR, Wang J. Deciphering neuronal population codes for acute thermal pain. J Neural Eng. 2017;14(3): 036023.
Article
Google Scholar
Singh A, Patel D, Li A, Hu L, Zhang Q, Liu Y, et al. Mapping cortical integration of sensory and affective pain pathways. Curr Biol. 2020;30(9):1703–15.
Article
CAS
Google Scholar
Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO. Pain-related neurons in the human cingulate cortex. Nat Neurosci. 1999;2(5):403–5.
Article
CAS
Google Scholar
Sikes RW, Vogt BA. Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol. 1992;68(5):1720–32.
Article
CAS
Google Scholar
Shyu BC, Sikes RW, Vogt LJ, Vogt BA. Nociceptive processing by anterior cingulate pyramidal neurons. J Neurophysiol. 2010;103(6):3287–301.
Article
Google Scholar
Corder G, Ahanonu B, Grewe BF, Wang D, Schnitzer MJ, Scherrer G. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science. 2019;363(6424):276–81.
Article
CAS
Google Scholar
Zhao R, Zhou H, Huang L, Xie Z, Wang J, Gan WB, et al. Neuropathic pain causes pyramidal neuronal hyperactivity in the anterior cingulate cortex. Front Cell Neurosci. 2018;12:107.
Article
Google Scholar
Cichon J, Blanck TJJ, Gan WB, Yang G. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain. Nat Neurosci. 2017;20(8):1122–32.
Article
CAS
Google Scholar
Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20.
Article
CAS
Google Scholar
Green JD, Arduini AA. Hippocampal electrical activity in arousal. J Neurophysiol. 1954;17(6):533–57.
Article
CAS
Google Scholar
Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science. 1978;201(4351):160–3.
Article
CAS
Google Scholar
Schulz E, May ES, Postorino M, Tiemann L, Nickel MM, Witkovsky V, et al. Prefrontal gamma oscillations encode tonic pain in humans. Cereb Cortex. 2015;25(11):4407–14.
Article
Google Scholar
Schulz E, Zherdin A, Tiemann L, Plant C, Ploner M. Decoding an individual’s sensitivity to pain from the multivariate analysis of EEG data. Cereb Cortex. 2012;22(5):1118–23.
Article
Google Scholar
Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007;5(5): e133.
Article
Google Scholar
Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD. Gamma-band oscillations in the primary somatosensory cortex–a direct and obligatory correlate of subjective pain intensity. J Neurosci. 2012;32(22):7429–38.
Article
CAS
Google Scholar
Taesler P, Rose M. Prestimulus theta oscillations and connectivity modulate pain perception. J Neurosci. 2016;36(18):5026–33.
Article
CAS
Google Scholar
Peng W, Tang D. Pain related cortical oscillations: methodological advances and potential applications. Front Comput Neurosci. 2016;10:9.
Article
Google Scholar
Peng WW, Xia XL, Yi M, Huang G, Zhang ZG, Iannetti GD, et al. Brain oscillations reflecting pain-related behavior in freely-moving rats. Pain. 2017;159(1):106.
Article
Google Scholar
Zhang Q, Xiao Z, Huang C, Hu S, Kulkarni P, Martinez E, et al. Local field potential decoding of the onset and intensity of acute pain in rats. Sci Rep. 2018;8(1):8299.
Article
Google Scholar
Sun G, Zeng F, McCartin M, Zhang Q, Xu H, Liu Y, et al. Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents. Sci Transl Med. 2022;14(651):eabm5868.
Article
CAS
Google Scholar
Zhang Q, Hu S, Talay R, Xiao Z, Rosenberg D, Liu Y, et al. A prototype closed-loop brain-machine interface for the study and treatment of pain. Nat Biomed Eng. 2021. https://doi.org/10.1038/s41551-021-00736-7.
Article
Google Scholar
Chen Z HS, Zhang Q, Wang J. Quickest detection for abrupt changes in neuronal ensemble spiking activity using model-based and model-free approaches. Proc IEEE Conf Neural Engineering. 2017.
Lee M, Manders TR, Eberle SE, Su C, D’Amour J, Yang R, et al. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci. 2015;35(13):5247–59.
Article
CAS
Google Scholar
Martinez E, Lin HH, Zhou H, Dale J, Liu K, Wang J. Corticostriatal regulation of acute pain. Front Cell Neurosci. 2017;11:146.
Article
Google Scholar
Zhang Z, Gadotti VM, Chen L, Souza IA, Stemkowski PL, Zamponi GW. Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep. 2015;12(5):752–9.
Article
CAS
Google Scholar
Hardy SG. Analgesia elicited by prefrontal stimulation. Brain Res. 1985;339(2):281–4.
Article
CAS
Google Scholar
Kiritoshi T, Ji G, Neugebauer V. Rescue of impaired mGluR5-driven endocannabinoid signaling restores prefrontal cortical output to inhibit pain in arthritic rats. J Neurosci. 2016;36(3):837–50.
Article
CAS
Google Scholar
Dale J, Zhou H, Zhang Q, Martinez E, Hu S, Liu K, et al. Scaling up cortical control inhibits pain. Cell Rep. 2018;23(5):1301–13.
Article
CAS
Google Scholar
Luo H, Huang Y, Du X, Zhang Y, Green AL, Aziz TZ, et al. Dynamic neural state identification in deep brain local field potentials of neuropathic pain. Front Neurosci. 2018;12:237.
Article
Google Scholar
Mouraux A, Iannetti GD. The search for pain biomarkers in the human brain. Brain. 2018;141(12):3290–307.
Article
Google Scholar
Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cogn Sci. 2017;21(2):100–10.
Article
Google Scholar
Lewin W, Whitty CW. Effects of anterior cingulate stimulation in conscious human subjects. J Neurophysiol. 1960;23:445–7.
Article
CAS
Google Scholar
Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci. 2002;22(3):970–6.
Article
CAS
Google Scholar
Kang SJ, Kwak C, Lee J, Sim SE, Shim J, Choi T, et al. Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Mol Brain. 2015;8(1):81.
Article
Google Scholar
Vogt BA, Sikes RW. The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res. 2000;122:223–35.
Article
CAS
Google Scholar
Meda KS, Patel T, Braz JM, Malik R, Turner ML, Seifikar H, et al. Microcircuit mechanisms through which mediodorsal thalamic input to anterior cingulate cortex exacerbates pain-related aversion. Neuron. 2019;102(5):944–59.
Article
CAS
Google Scholar
Tan LL, Oswald MJ, Heinl C, Retana Romero OA, Kaushalya SK, Monyer H, et al. Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat Commun. 2019;10(1):983.
Article
Google Scholar
Craig A, Dostrovsky J. Differential projections of thermoreceptive and nociceptive lamina I trigeminothalamic and spinothalamic neurons in the cat. J Neurophysiol. 2001;86(2):856–70.
Article
CAS
Google Scholar
Almeida TF, Roizenblatt S, Tufik S. Afferent pain pathways: a neuroanatomical review. Brain Res. 2004;1000(1–2):40–56.
Article
CAS
Google Scholar
Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29:355–84.
Article
CAS
Google Scholar
Zheng J. Molecular mechanism of TRP channels. Compr Physiol. 2013;3(1):221.
Article
Google Scholar
Patapoutian A, Tate S, Woolf CJ. Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discovery. 2009;8(1):55–68.
Article
CAS
Google Scholar
Eimer M, Schlaghecken F. Response facilitation and inhibition in subliminal priming. Biol Psychol. 2003;64(1–2):7–26.
Article
Google Scholar
Elgendi M, Kumar P, Barbic S, Howard N, Abbott D, Cichocki A. Subliminal priming—state of the art and future perspectives. Behav Sci. 2018;8(6):54.
Article
Google Scholar
Urien L, Xiao Z, Dale J, Bauer EP, Chen Z, Wang J. Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation. Sci Rep. 2018;8(1):8298.
Article
Google Scholar