Goldberg DS, McGee SJ. Pain as a global public health priority. BMC Public Health 2011;11(1):1.
Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87(2):81–97.
Article
Google Scholar
Li X-Y, Ko H-G, Chen T, Descalzi G, Koga K, Wang H, et al. Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science. 2010;330:1400–4.
Article
CAS
Google Scholar
Tan W, Yao W-L, Hu R, Lv Y-Y, Wan L, Zhang C-H, et al. Alleviating neuropathic pain mechanical allodynia by increasing Cdh1 in the anterior cingulate cortex. Mol Pain. 2015;11:56.
Article
Google Scholar
Han J, Kwon M, Cha M, Tanioka M, Hong S-K, Bai SJ, et al. Plasticity-related PKMζ signaling in the insular cortex is involved in the modulation of neuropathic pain after nerve injury. Neural Plast. 2015:2015.
Li X-Y, Ko H-G, Chen T, Descalzi G, Koga K, Wang H, et al. Alleviating neuropathic pain hypersensitivity by inhibiting PKMζ in the anterior cingulate cortex. Science. 2010;330(6009):1400–4.
Article
CAS
Google Scholar
Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983.
Woolf CJ, Wall PD. Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J Neurosci. 1986;6(5):1433–42.
Article
CAS
Google Scholar
Cook AJ, Woolf CJ, Wall PD, McMahon SB. Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature. 1987;325(6100):151–3.
Article
CAS
Google Scholar
Ji R-R, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26(12):696–705.
Article
CAS
Google Scholar
Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci. 2004;5(12):952–62.
Article
CAS
Google Scholar
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1–60.
Article
CAS
Google Scholar
Ali Z, Ringkamp M, Hartke TV, Chien HF. Flavahan Na, Campbell JN, et al. uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol. 1999;81:81.
Article
Google Scholar
Liu C-N, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain. 2000;85(3):503–21.
Article
CAS
Google Scholar
Tseng W-T, Tsai M-L, Iwata K, Yen C-T. Long-term changes in trigeminal ganglionic and thalamic neuronal activities following inferior alveolar nerve transection in behaving rats. J Neurosci. 2012;32:16051–63.
Article
CAS
Google Scholar
Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci. 2012;15:1117–9.
Article
CAS
Google Scholar
Burgmer M, Pfleiderer B, Maihöfner C, Gaubitz M, Wessolleck E, Heuft G, et al. Cerebral mechanisms of experimental hyperalgesia in fibromyalgia. Eur J Pain. 2012;16(5):636–47.
Article
CAS
Google Scholar
Kim S, Nabekura J. Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci. 2011;31:5477–82.
Article
CAS
Google Scholar
Li R, Hettinger PC, Machol JA, Liu X, Stephenson J, Pawela CP, et al. Cortical plasticity induced by different degrees of peripheral nerve injuries: a rat functional magnetic resonance imaging study under 9.4 tesla. Journal of brachial plexus and peripheral nerve injury. 2013;8(1):4.
PubMed
PubMed Central
Google Scholar
Chao THH, Chen JH, Yen CT. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats. PLoS One. 2014;9.
Article
Google Scholar
Weber R, Ramos-Cabrer P, Wiedermann D, Van Camp N, Hoehn M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. NeuroImage 2006;29:1303–1310.
Article
Google Scholar
Niskanen J-P, Airaksinen AM, Sierra A, Huttunen JK, Nissinen J, Karjalainen PA, et al. Monitoring Functional Impairment and Recovery After Traumatic Brain Injury in Rats by fMRI. J Neurotrauma. 2012(ja).
Weber R, Ramos-Cabrer P, Justicia C, Wiedermann D, Strecker C, Sprenger C, et al. Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats. J Neurosci. 2008;28(5):1022–9.
Article
CAS
Google Scholar
Eschenko O, Canals S, Simanova I, Beyerlein M, Murayama Y, Logothetis NK. Mapping of functional brain activity in freely behaving rats during voluntary running using manganese-enhanced MRI: implication for longitudinal studies. NeuroImage. 2010;49:2544–55.
Article
CAS
Google Scholar
Hattori S, Hagihara H, Ohira K, Aoki I, Saga T, Suhara T, et al. In vivo evaluation of cellular activity in αCaMKII heterozygous knockout mice using manganese-enhanced magnetic resonance imaging (MEMRI). Front Integr Neurosci. 2013;7:76.
Article
Google Scholar
Chen KH, Chen DY, Liang KC. Functional connectivity changes during consolidation of inhibitory avoidance memory in rats: a manganese-enhanced MRI study. The Chinese journal of physiology. 2013;56:269–81.
Article
Google Scholar
Itoh K, Sakata M, Watanabe M, Aikawa Y, Fujii H. The entry of manganese ions into the brain is accelerated by the activation of N-methyl-d-aspartate receptors. Neuroscience. 2008;154:732–40.
Article
CAS
Google Scholar
Hankir MK, Parkinson JR, Bloom SR, Bell JD. The effects of glutamate receptor agonists and antagonists on mouse hypothalamic and hippocampal neuronal activity shown through manganese enhanced MRI. NeuroImage. 2012;59:968–78.
Article
CAS
Google Scholar
Silva AC, Bock NA. Manganese-enhanced MRI: An exceptional tool in translational neuroimaging. Schizophr Bull 2008;34:595–604.
Article
Google Scholar
Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87(2):149–58.
Article
CAS
Google Scholar
Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.
Article
CAS
Google Scholar
Tseng W-T, Yen C-T, Tsai M-L. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J Neurosci Methods. 2011;201(2):368–76.
Article
Google Scholar
Chuang KH, Koretsky AP, Sotak CH. Temporal changes in the T1 and T2 relaxation rates (??R1 and ??R2) in the rat brain are consistent with the tissue-clearance rates of elemental manganese. Magn Reson Med. 2009;61:1528–32.
Article
Google Scholar
Lin H-C, Huang Y-H, Chao T-HH, Lin W-Y, Sun W-Z, Yen C-T. Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain. 2014;10:63.
Article
Google Scholar
Ward BD. Simultaneous Inference for fMRI Data. 2000:1–16.
Apkarian AV, Hashmi JA, Baliki MN. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain. 2011;152:S49–64.
Article
Google Scholar
Witting N, Kupers RC, Svensson P, Jensen TS. A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain. 2006;120:145–54.
Article
Google Scholar
Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. NeuroImage. 2006;32:256–65.
Article
Google Scholar
Samuelsson M, Leffler AS, Hansson P. Dynamic mechanical allodynia: on the relationship between temporo-spatial stimulus parameters and evoked pain in patients with peripheral neuropathy. Pain. 2005;115:264–72.
Article
Google Scholar
Peyron R, Schneider F, Faillenot I, Convers P, Barral F-G, Garcia-Larrea L, et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology. 2004;63:1838–46.
Article
CAS
Google Scholar
Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 2008;28:1398–403.
Article
CAS
Google Scholar
Welsh RC, Chen AC, Taylor SF. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull. 2010;36:713–22.
Article
Google Scholar
Cardoso-Cruz H, Lima D, Galhardo V. Impaired spatial memory performance in a rat model of neuropathic pain is associated with reduced hippocampus-prefrontal cortex connectivity. J Neurosci. 2013;33:2465–80.
Article
CAS
Google Scholar
Sandkühler J, Liu X. Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci. 1998;10:2476–80.
Article
Google Scholar
Gruber-Schoffnegger D, Drdla-Schutting R, Hönigsperger C, Wunderbaldinger G, Gassner M, Sandkühler J. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J Neurosci. 2013;33:6540–51.
Article
CAS
Google Scholar
Zhang H-M, Zhou L-J, Hu X-D, Hu N-W, Zhang T, Liu X-G. Acute nerve injury induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn of intact rat. Sheng li xue bao : [Acta physiologica Sinica]. 2004;56:591–6.
Google Scholar
Liu X-G, Zhou L-J. Long-term potentiation at spinal C-fiber synapses: a target for pathological pain. Curr Pharm Des. 2015;21:895–905.
Article
CAS
Google Scholar
Cho YR, Jones SR, Pawela CP, Li R, Kao DS, Schulte ML, et al. Cortical brain mapping of peripheral nerves using functional magnetic resonance imaging in a rodent model. J Reconstr Microsurg. 2008;24:551–7.
Article
Google Scholar
Yi M, Zhang H. Nociceptive memory in the brain: cortical mechanisms of chronic pain. J Neurosci. 2011;31:13343–5.
Article
CAS
Google Scholar
Mansour AR, Farmer MA, Baliki MN, Apkarian AV. Chronic pain: the role of learning and brain plasticity. Restor Neurol Neurosci. 2014;32:129–39.
CAS
PubMed
PubMed Central
Google Scholar
Pasley B, Freeman R. Neurovascular coupling. Scholarpedia. 2008;3:5340.
Article
Google Scholar
Harder DR, Alkayed NJ. Lange aR, Gebremedhin D, Roman RJ. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke. 1998;29:229–34.
Article
CAS
Google Scholar
Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25(12):621–5.
Article
CAS
Google Scholar
Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357:1003–37.
Article
Google Scholar
Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 1995;34:537–41.
Article
CAS
Google Scholar
Silva AC, Lee JH, Aoki I, Koretsky AP. Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed. 2004;17:532–43.
Article
CAS
Google Scholar
Jeong K-Y, Lee C, Cho J-H, Kang J-H, Na H-S. New method of manganese-enhanced magnetic resonance imaging (MEMRI) for rat brain research. Experimental animals / Japanese Association for Laboratory Animal Science. 2012;61:157–64.
Article
CAS
Google Scholar
Ferrier J, Bayet-Robert M, Dalmann R. El Guerrab a, Aissouni Y, Graveron-Demilly D, et al. cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: key role of muscarinic M2 receptors in donepezil-induced Antinociception. J Neurosci. 2015;35:16418–30.
Article
CAS
Google Scholar
Qiu S, Zhang M, Liu Y, Guo Y, Zhao H, Song Q, et al. GluA1 phosphorylation contributes to postsynaptic amplification of neuropathic pain in the insular cortex. J Neurosci. 2014;34:13505–15.
Article
Google Scholar
Han J, Kwon M, Cha M, Tanioka M. Hong S-k, Bai SJ, et al. Plasticity-Related PKM ζ Signaling in the Insular Cortex Is Involved in the Modulation of Neuropathic Pain after Nerve Injury Neural Plasticity. 2015;2015:1–10.
Google Scholar
Circuitry and functional aspects of the insular lobe in primates including humans, (1996).
Craig AD. Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol. 2003;13:500–5.
Article
CAS
Google Scholar
Downar J, Crawley AP, Mikulis DJ, Davis KD. A cortical network for the detection of novel events across multiple sensory modalities. NeuroImage. 2001;13:S310-S.
Article
Google Scholar
Coghill RC, Sang CN, Maisog JM, Iadarola MJ. Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol. 1999;82:1934–43.
Article
CAS
Google Scholar
Baliki MN, Geha PY. Apkarian aV. parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol. 2009;101:875–87.
Article
CAS
Google Scholar
Moayedi M, Weissman-Fogel I. Is the insula the "how much" intensity coder? J Neurophysiol. 2009;102:1345–7.
Article
Google Scholar
Downar J, Mikulis DJ, Davis KD. Neural correlates of the prolonged salience of painful stimulation. NeuroImage. 2003;20:1540–51.
Article
Google Scholar
Brooks JCW, Tracey I. The insula: A multidimensional integration site for pain. Pain2007. p. 1–2.
Article
CAS
Google Scholar
Ea M, Keaser ML, Gullapalli RP, Greenspan JD. Regional intensive and temporal patterns of functional MRI activation distinguishing noxious and innocuous contact heat. J Neurophysiol. 2005;93:2183–93.
Article
Google Scholar
Rainville P, Carrier B, Hofbauer RK, Bushnell MC, Duncan GH. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain. 1999;82:159–71.
Article
CAS
Google Scholar
Kaas JH, Merzenich MM, Killackey HP. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci. 1983;6:325–56.
Article
CAS
Google Scholar
Petrovic P, Ingvar M, Stone-Elander S, Petersson KM, Hansson P. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain. 1999;83:459–70.
Article
CAS
Google Scholar
Peyron R, Faillenot I, Pomares FB, Le Bars D, Garcia-Larrea L, Laurent B. Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur J Pain 2013;17:1327–1337.
Article
CAS
Google Scholar
Kim CE, Kim YK, Chung G, Im HJ, Lee DS, Kim J, et al. Identifying neuropathic pain using 18F-FDG micro-PET: a multivariate pattern analysis. NeuroImage. 2014;86:311–6.
Article
Google Scholar
Jasmin L, Granato A, Ohara PT. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol. 2004;468(3):425–40.
Article
Google Scholar
Cliffer K, Burstein R, Giesler G. Distributions of spinothalamic, spinohypothalamic, and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J Neurosci. 1991;11(3):852–68.
Article
CAS
Google Scholar
Ma W, Peschanski M, Ralston HJ. Fine structure of the spinothalamic projections to the central lateral nucleus of the rat thalamus. Brain Res. 1987;414(1):187–91.
Article
CAS
Google Scholar
Ganchrow D. Intratrigeminal and thalamic projections of nucleus caudalis in the squirrel monkey (Saimiri sciureus): a degeneration and autoradiographic study. J Comp Neurol. 1978;178(2):281–311.
Article
CAS
Google Scholar
Craig A. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol. 2004;477(2):119–48.
Article
CAS
Google Scholar
Itoh K, Mizuno N. Topographical arrangement of thalamocortical neurons in the centrolateral nucleus (CL) of the cat, with special reference to a spino-thalamo-motor cortical path through the CL. Exp Brain Res. 1977;30(4):471–80.
Article
CAS
Google Scholar
Aimone L, Bauer C, Gebhart G. Brain-stem relays mediating stimulation-produced antinociception from the lateral hypothalamus in the rat. J Neurosci. 1988;8(7):2652–63.
Article
CAS
Google Scholar
Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7(1):309–38.
Article
CAS
Google Scholar
Carstens E, Fraunhoffer M, Suberg S. Inhibition of spinal dorsal horn neuronal responses to noxious skin heating by lateral hypothalamic stimulation in the cat. J Neurophysiol. 1983;50(1):192–204.
Article
CAS
Google Scholar
Chiang C, Hu JW, Sessle BJ. Parabrachial area and nucleus raphe magnus-induced modulation of nociceptive and nonnociceptive trigeminal subnucleus caudalis neurons activated by cutaneous or deep inputs. J Neurophysiol. 1994;71(6):2430–45.
Article
CAS
Google Scholar
Chiang CY, Sessle BJ, Hu JW. Parabrachial area and nucleus raphe magnus-induced modulation of electrically evoked trigeminal subnucleus caudalis neuronal responses to cutaneous or deep A-fiber and C-fiber inputs in rats. Pain. 1995;62(1):61–8.
Article
CAS
Google Scholar
Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474.
Article
CAS
Google Scholar
Prado WA, Faganello FA. The anterior pretectal nucleus participates as a relay station in the glutamate-, but not morphine-induced antinociception from the dorsal raphe nucleus in rats. Pain. 2000;88(2):169–76.
Article
CAS
Google Scholar
Jasmin L, Rabkin SD, Granato A, Boudah A, Ohara PT. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature. 2003;424(6946):316–20.
Article
CAS
Google Scholar
Lee K-S, Huang Y-H, Yen C-T. Periaqueductal gray stimulation suppresses spontaneous pain behavior in rats. Neurosci Lett. 2012;514(1):42–5.
Article
CAS
Google Scholar