Leresche N, Lambert RC. T-type calcium channels in synaptic plasticity. Channels (Austin). 2017;11:121–39. https://doi.org/10.1080/19336950.2016.1238992.
Article
Google Scholar
Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117–61. https://doi.org/10.1152/physrev.00018.2002.
Article
CAS
PubMed
Google Scholar
Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov. 2016;15:19–34. https://doi.org/10.1038/nrd.2015.5.
Article
CAS
PubMed
Google Scholar
Cain SM, Snutch TP. T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta. 1828;2013:1572–8. https://doi.org/10.1016/j.bbamem.2012.07.028.
Article
CAS
Google Scholar
Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol. 2007;62:560–8. https://doi.org/10.1002/ana.21169.
Article
CAS
PubMed
Google Scholar
Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch. 2010;460:395–403. https://doi.org/10.1007/s00424-009-0772-x.
Article
CAS
PubMed
Google Scholar
Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol. 2003;54:239–43. https://doi.org/10.1002/ana.10607.
Article
CAS
PubMed
Google Scholar
Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW. Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem. 2004;279:9681–4. https://doi.org/10.1074/jbc.C400006200.
Article
CAS
PubMed
Google Scholar
Peloquin JB, Khosravani H, Barr W, Bladen C, Evans R, Mezeyova J, Parker D, Snutch TP, McRory JE, Zamponi GW. Functional analysis of Ca3.2 T-type calcium channel mutations linked to childhood absence epilepsy. Epilepsia. 2006;47:655–8. https://doi.org/10.1111/j.1528-1167.2006.00482.x.
Article
PubMed
Google Scholar
Vitko I, Chen Y, Arias JM, Shen Y, Wu XR, Perez-Reyes E. Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci. 2005;25:4844–55. https://doi.org/10.1523/JNEUROSCI.0847-05.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E. The I-II loop controls plasma membrane expression and gating of Ca(v)3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci. 2007;27:322–30. https://doi.org/10.1523/JNEUROSCI.1817-06.2007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, Foote SJ, Snutch TP, O'Brien TJ. A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci. 2009;29:371–80. https://doi.org/10.1523/JNEUROSCI.5295-08.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Gandini MA, Zhang FX, Chen L, Souza IA, Zamponi GW. Down-regulation of T-type Cav3.2 channels by hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1): Evidence of a signaling complex. Channels (Austin). 2017;11:434–43. https://doi.org/10.1080/19336950.2017.1326233.
Article
Google Scholar
Souza IA, Gandini MA, Wan MM, Zamponi GW. Two heterozygous Cav3.2 channel mutations in a pediatric chronic pain patient: recording condition-dependent biophysical effects. Pflugers Arch. 2016;468:635–42. https://doi.org/10.1007/s00424-015-1776-3.
Article
CAS
PubMed
Google Scholar
Scholl UI, Stolting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H, Fahlke C, Lifton RP. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife. 2015;4:e06315. https://doi.org/10.7554/eLife.06315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT. CACNA1H mutations in autism spectrum disorders. J Biol Chem. 2006;281:22085–91. https://doi.org/10.1074/jbc.M603316200.
Article
CAS
PubMed
Google Scholar
Rzhepetskyy Y, Lazniewska J, Blesneac I, Pamphlett R, Weiss N. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels (Austin). 2016;10:466–77. https://doi.org/10.1080/19336950.2016.1204497.
Article
Google Scholar
Hans M, Luvisetto S, Williams ME, Spagnolo M, Urrutia A, Tottene A, Brust PF, Johnson EC, Harpold MM, Stauderman KA, Pietrobon D. Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci. 1999;19:1610–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iftinca M, McKay BE, Snutch TP, McRory JE, Turner RW, Zamponi GW. Temperature dependence of T-type calcium channel gating. Neuroscience. 2006;142:1031–42. https://doi.org/10.1016/j.neuroscience.2006.07.010.
Article
CAS
PubMed
Google Scholar
Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci. 1995;15:3110–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broicher T, Kanyshkova T, Meuth P, Pape HC, Budde T. Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci. 2008;39:384–99. https://doi.org/10.1016/j.mcn.2008.07.012.
Article
CAS
PubMed
Google Scholar
Su H, Sochivko D, Becker A, Chen J, Jiang Y, Yaari Y, Beck H. Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci. 2002;22:3645–55. 20026339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaari Y, Yue C, Su H. Recruitment of apical dendritic T-type Ca2+ channels by backpropagating spikes underlies de novo intrinsic bursting in hippocampal epileptogenesis. J Physiol. 2007;580:435–50. https://doi.org/10.1113/jphysiol.2007.127670.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker AJ, Pitsch J, Sochivko D, Opitz T, Staniek M, Chen CC, Campbell KP, Schoch S, Yaari Y, Beck H. Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci. 2008;28:13341–53. https://doi.org/10.1523/JNEUROSCI.1421-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim CH. Cav3.1 T-type calcium channel modulates the epileptogenicity of hippocampal seizures in the kainic acid-induced temporal lobe epilepsy model. Brain Res. 2015;1622:204–16. https://doi.org/10.1016/j.brainres.2015.06.015.
Article
CAS
PubMed
Google Scholar
Dube CM, Brewster AL, Baram TZ. Febrile seizures: mechanisms and relationship to epilepsy. Brain and Development. 2009;31:366–71. https://doi.org/10.1016/j.braindev.2008.11.010.
Article
PubMed
Google Scholar
Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, Minikel EV, Exome Aggregation C, MacArthur DG, Farrall M, Cook SA, Watkins H. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19:192–203. https://doi.org/10.1038/gim.2016.90.
Article
PubMed
Google Scholar
Dibbens LM, Heron SE, Mulley JC. A polygenic heterogeneity model for common epilepsies with complex genetics. Genes Brain Behav. 2007;6:593–7. https://doi.org/10.1111/j.1601-183X.2007.00333.x.
Article
CAS
PubMed
Google Scholar