Corrigan JD, Selassie AW, Orman JA. The epidemiology of traumatic brain injury. J Head Trauma Rehabil. 2010;25:72–80.
Article
PubMed
Google Scholar
Feigin VL, Theadom A, Barker-Collo S, Starkey NJ, McPherson K, Kahan M, Dowell A, Brown P, Parag V, Kydd R, Jones K, Jones A, Ameratunga S. Incidence of traumatic brain injury in New Zealand: a population-based study. Lancet Neurol. 2013;12:53–64.
Article
PubMed
Google Scholar
(2010). Traumatic brain injury: time to end the silence. Lancet Neurol 9, 331.
Stoica BA, Faden AI. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics. 2010;7:3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zweckberger K, Eros C, Zimmermann R, Kim SW, Engel D, Plesnila N. Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma. 2006;23:1083–93.
Article
PubMed
Google Scholar
Abou-Abbass H, Bahmad H, Ghandour H, Fares J, Wazzi-Mkahal R, Yacoub B, Darwish H, Mondello S, Harati H, El Sayed MJ, Tamim H, Kobeissy F. Epidemiology and clinical characteristics of traumatic brain injury in Lebanon: a systematic review. Medicine (Baltimore). 2016;95: e5342.
Article
Google Scholar
Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caley DP, Pink RC, Trujillano D, Carter DR. Long noncoding RNAs, chromatin, and development. Sci World J. 2010;10:90–102.
Article
CAS
Google Scholar
Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477:295–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Y-B, Lu J, Yang B, Lenahan C, Zhang J, Shao A. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in intracranial aneurysm. BMC Neurosci. 2021;22:15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou J-B, Chai H-B, Zhang X-F, Guo D-Y, Tai J, Wang Y, Liang Y-L, Wang F, Cheng J-X, Wang J, Shi Y-J. Reconstruction of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in Cerebral Infarction. Sci Rep. 2019;9:12176.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin Z, Li X, Zhan X. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in type 2 diabetes mellitus. J Cell Mol Med. 2017;21:3204–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan H, Pan J, Song S, Ji L, Lv H, Yang Z. Identification and development of long non-coding RNA-associated regulatory network in colorectal cancer. J Cell Mol Med. 2019;23:5200–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JD, Zhou HS, Tu XX, He Y, Liu QF, Liu Q, Long ZJ. Prediction of competing endogenous RNA coexpression network as prognostic markers in AML. Aging (Albany NY). 2019;11:3333–47.
Article
CAS
Google Scholar
Long J, Xiong J, Bai Y, Mao J, Lin J, Xu W, Zhang H, Chen S, Zhao H. Construction and investigation of a lncRNA-associated ceRNA regulatory network in cholangiocarcinoma. Front Oncol. 2019;9:649.
Article
PubMed
PubMed Central
Google Scholar
Raveendra BL, Swarnkar S, Avchalumov Y, Liu X-A, Grinman E, Badal K, Reich A, Pascal BD, Puthanveettil SV. Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function. Proc Natl Acad Sci. 2018;115:E10197–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci. 2009;12:1020–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos AD, Andersen RE, Liu SJ, Nowakowski TJ, Hong SJ, Gertz C, Salinas RD, Zarabi H, Kriegstein AR, Lim DA. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015;16:439–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105:716–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Wang Q, Liu B, Mei L, Ma S, Wang S, Wang R, Zhang Y, Niu C, Xiong Z, Zheng Y, Zhang Z, Shi J, Song X. The long noncoding RNA Synage regulates synapse stability and neuronal function in the cerebellum. Cell Death Differ. 2021;28:2634–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics (Oxford, England). 2009;25:2078–9.
Article
CAS
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics (Oxford, England). 2014;30:923–30.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.
Article
CAS
Google Scholar
Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013;42:D92–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, Huang W-C, Sun T-H, Tu S-J, Lee W-H, Chiew M-Y, Tai C-S, Wei T-Y, Tsai T-R, Huang H-T, Wang C-Y, Wu H-Y, Ho S-Y, Chen P-R, Chuang C-H, Hsieh P-J, Wu Y-S, Chen W-L, Li M-J, Wu Y-C, Huang X-Y, Ng FL, Buddhakosai W, Huang P-C, Lan K-C, Huang C-Y, Weng S-L, Cheng Y-N, Liang C, Hsu W-L, Huang H-D. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2017;46:D296–302.
Article
PubMed Central
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016;45:D362–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Redell JB, Liu Y, Dash PK. Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J Neurosci Res. 2009;87:1435–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meissner L, Gallozzi M, Balbi M, Schwarzmaier S, Tiedt S, Terpolilli NA, Plesnila N. Temporal profile of microRNA expression in contused cortex after traumatic brain injury in mice. J Neurotrauma. 2016;33:713–20.
Article
PubMed
Google Scholar
Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J. MiR-377 regulates inflammation and angiogenesis in rats after cerebral ischemic injury. J Cell Biochem. 2018;119:327–37.
Article
CAS
PubMed
Google Scholar
Liu Z, Yang Q, Wei Q, Chang Y, Qu M, Yu L. The protective effect of miR-377 inhibitor against renal ischemia-reperfusion injury through inhibition of inflammation and oxidative stress via a VEGF-dependent mechanism in mice. Mol Immunol. 2019;106:153–8.
Article
CAS
PubMed
Google Scholar
Feng N, Wang Z, Wu Y, Zheng H, Jiang X, Wang Z, Qu F, Zhang Z. ADAMTS9-AS2 promotes angiogenesis of brain microvascular endothelial cells through regulating miR-185–5p/IGFBP-2 axis in ischemic stroke. Mol Neurobiol. 2022. https://doi.org/10.1007/s12035-021-02641-1.
Article
PubMed
PubMed Central
Google Scholar
Yu H, Xu A, Wu B, Wang M, Chen Z. Long noncoding RNA NEAT1 promotes progression of glioma as a ceRNA by sponging miR-185-5p to stimulate DNMT1/mTOR signaling. J Cell Physiol. 2021;236:121–30.
Article
CAS
PubMed
Google Scholar
Zhuang S-T, Cai Y-J, Liu H-P, Qin Y, Wen J-F. LncRNA NEAT1/miR-185-5p/IGF2 axis regulates the invasion and migration of colon cancer. Mol Genet Genomic Med. 2020;8: e1125.
Article
PubMed
PubMed Central
Google Scholar
Wang P, Wu T, Zhou H, Jin Q, He G, Yu H, Xuan L, Wang X, Tian L, Sun Y, Liu M, Qu L. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res. 2016;35:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang X, Xiao Z, Du X, Huang L, Du G. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep. 2017;37:555–62.
Article
PubMed
Google Scholar
Zhen Y, Nan Y, Guo S, Zhang L, Li G, Yue S, Liu X. Knockdown of NEAT1 repressed the malignant progression of glioma through sponging miR-107 and inhibiting CDK14. J Cell Physiol. 2019;234:10671–9.
Article
CAS
PubMed
Google Scholar
Zhong J, Jiang L, Huang Z, Zhang H, Cheng C, Liu H, He J, Wu J, Darwazeh R, Wu Y, Sun X. The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav Immun. 2017;65:183–94.
Article
CAS
PubMed
Google Scholar
Zhu H-T, Bian C, Yuan J-C, Chu W-H, Xiang X, Chen F, Wang C-S, Feng H, Lin J-K. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflamm. 2014;11:59.
Article
CAS
Google Scholar
Cai L, Ge B, Xu S, Chen X, Yang H. Up-regulation of circARF3 reduces blood-brain barrier damage in rat subarachnoid hemorrhage model via miR-31-5p/MyD88/NF-κB axis. Aging. 2021;13:21345–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng H, Wang L, Su Q, Yi K, Du J, Wang Z. MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB. Biomed Pharmacother. 2019;109:208–16.
Article
CAS
PubMed
Google Scholar
Yang Y, Xue J, Qin L, Zhang J, Liu J, Yu J. LncRNA NEAT1 Promotes Inflammatory Response in Sepsis via the miR-31-5p/POU2F1 Axis. Inflammation. 2021;44:1518–28.
Article
CAS
PubMed
Google Scholar
Pan Y-B, Sun Z-L, Feng D-F. The Role of MicroRNA in Traumatic Brain Injury. Neuroscience. 2017;367:189–99.
Article
CAS
PubMed
Google Scholar
Li Z, Han K, Zhang D, Chen J, Xu Z, Hou L. The role of long noncoding RNA in traumatic brain injury. Neuropsychiatr Dis Treat. 2019;15:1671–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao S, Chen Y, Xu B, Yu C, Yue M, Tan X, Zhang J, Feng C, Song C, Ai B, Bai X, Liu Y, Li X, Zhao J, Shi S, Chen X, Su X, Li C. Identification and analysis of a key long non-coding RNAs (lncRNAs)-associated module reveal functional lncRNAs in cardiac hypertrophy. J Cell Mol Med. 2018;22:892–903.
Google Scholar
Bolisetty S, Traylor AM, Kim J, Joseph R, Ricart K, Landar A, Agarwal A. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. J Am Soc Nephrol. 2010;21:1702–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowich H, Chen J, Du C, Yin XM. Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem. 2002;277:26912–20.
Article
CAS
PubMed
Google Scholar
Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A, Morishita Y, Akira S, Taniguchi T, Tanaka N. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev. 2003;17:2233–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye J, Zhu J, Chen H, Qian J, Zhang L, Wan Z, Chen F, Sun S, Li W, Luo C. A novel lncRNA-LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. Int J Cancer. 2020;146:248–61.
Article
CAS
PubMed
Google Scholar
Chen B, Wang H, Lv C, Mao C, Cui Y. Long non-coding RNA H19 protects against intracerebral hemorrhage injuries via regulating microRNA-106b-5p/acyl-CoA synthetase long chain family member 4 axis. Bioengineered. 2021;12:4004–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao S, Huang H, Chen X. lncRNA H19 aggravates brain injury in rats following experimental intracerebral hemorrhage via NF-κB pathway. Comput Math Methods Med. 2022;2022:3017312.
PubMed
PubMed Central
Google Scholar
Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomed Pharmacother. 2019;117: 109015.
Article
CAS
PubMed
Google Scholar
Filipovic R, Jakovcevski I, Zecevic N. GRO-α and CXCR2 in the human fetal brain and multiple sclerosis lesions. Dev Neurosci. 2003;25:279–90.
Article
CAS
PubMed
Google Scholar
Popivanova BK, Koike K, Tonchev AB, Ishida Y, Kondo T, Ogawa S, Mukaida N, Inoue M, Yamashima T. Accumulation of microglial cells expressing ELR motif-positive CXC chemokines and their receptor CXCR2 in monkey hippocampus after ischemia-reperfusion. Brain Res. 2003;970:195–204.
Article
CAS
PubMed
Google Scholar
Watson K, Fan G-H. Macrophage inflammatory protein 2 inhibits β-amyloid peptide (1–42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol. 2005;67:757–65.
Article
CAS
PubMed
Google Scholar
Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, Morganti-Kossmann MC. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol. 2007;204:220–33.
Article
CAS
PubMed
Google Scholar
Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC. Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis. 2010;40:394–403.
Article
CAS
PubMed
Google Scholar
Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab. 2010;30:459–73.
Article
CAS
PubMed
Google Scholar
Xiao X, Bai P, Cao S, Jiang Y, Liang W, Wang T, Luo X, Guan Q, Gao L, Zhang L. Integrated bioinformatics analysis for the identification of key molecules and pathways in the hippocampus of rats after traumatic brain injury. Neurochem Res. 2020;45:928–39.
Article
CAS
PubMed
Google Scholar
Zhang Y-M, Chen S-X, Dai Q-F, Jiang S-T, Chen A-L, Tang C-Z, Zhang Y-Q. Effect of acupuncture on the notch signaling pathway in rats with brain injury. Chin J Integr Med. 2018;24:537–44.
Article
CAS
PubMed
Google Scholar
Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53:731–42.
Article
CAS
PubMed
Google Scholar
Saglam E, Zırh S, Aktas CC, Muftuoglu SF, Bilginer B. Papaverine provides neuroprotection by suppressing neuroinflammation and apoptosis in the traumatic brain injury via RAGE-NF-κB pathway. J Neuroimmunol. 2021;352: 577476.
Article
CAS
PubMed
Google Scholar