Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D: Cell fate determination in the vertebrate retina. PNAS. 1996, 93: 589-595. 10.1073/pnas.93.2.589.
Article
PubMed Central
CAS
PubMed
Google Scholar
Livesey FJ, Cepko CL: VERTEBRATE NEURAL CELL-FATE DETERMINATION: LESSONS FROM THE RETINA. Nat Rev Neurosci. 2001, 2: 109-118. 10.1038/35053522.
Article
CAS
PubMed
Google Scholar
Young RW: Cell differentiation in the retina of the mouse. The Anatomical Record. 1985, 212: 199-205. 10.1002/ar.1092120215.
Article
CAS
PubMed
Google Scholar
Hatakeyama J, Tomita K, Inoue T, Kageyama R: Roles of homeobox and bHLH genes in specification of a retinal cell type. Development. 2001, 128: 1313-1322.
CAS
PubMed
Google Scholar
Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R: Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development (Cambridge, England). 2002, 129: 831-842.
CAS
Google Scholar
Hatakeyama J, Kageyama R: Retinal cell fate determination and bHLH factors. Seminars in Cell & Developmental Biology Protein Misfolding and Human Disease and Developmental Biology of the Retina. 2004, 15: 83-89.
CAS
Google Scholar
Wang JC-C, Harris WA: The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification. Developmental Biology. 2005, 285: 101-115. 10.1016/j.ydbio.2005.05.041.
Article
CAS
PubMed
Google Scholar
Hatakeyama J, Tomita K, Inoue T, Kageyama R: Roles of homeobox and bHLH genes in specification of a retinal cell type. Development. 2001, 128: 1313-1322.
CAS
PubMed
Google Scholar
Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L: Requirement for math5 in the development of retinal ganglion cells. Genes & Development. 2001, 15: 24-29.
Article
CAS
Google Scholar
Brown NL, Patel S, Brzezinski J, Glaser T: Math5 is required for retinal ganglion cell and optic nerve formation. Development. 2001, 128: 2497-2508.
PubMed Central
CAS
PubMed
Google Scholar
Kay JN, Finger-Baier KC, Roeser T, Staub W, Baier H: Retinal Ganglion Cell Genesis Requires lakritz, a Zebrafish atonal Homolog. Neuron. 2001, 30: 725-736. 10.1016/S0896-6273(01)00312-9.
Article
CAS
PubMed
Google Scholar
Yang Z, Ding K, Pan L, Deng M, Gan L: Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol. 2003, 264: 240-254. 10.1016/j.ydbio.2003.08.005.
Article
CAS
PubMed
Google Scholar
Kanadia RN, Cepko CL: Alternative splicing produces high levels of noncoding isoforms of bHLH transcription factors during development. Genes Dev. 2010, 24: 229-234. 10.1101/gad.1847110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morrow EM, Furukawa T, Lee JE, Cepko CL: NeuroD regulates multiple functions in the developing neural retina in rodent. Development. 1999, 126: 23-36.
CAS
PubMed
Google Scholar
Pennesi ME, Cho J-H, Yang Z, Wu SH, Zhang J, Wu SM, Tsai M-J: BETA2/NeuroD1 Null Mice: A New Model for Transcription Factor-Dependent Photoreceptor Degeneration. J Neurosci. 2003, 23: 453-461.
CAS
PubMed
Google Scholar
Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K, Chow RL, Gan L: Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development. 2006, 133: 4815-4825. 10.1242/dev.02664.
Article
PubMed Central
CAS
PubMed
Google Scholar
Turner DL, Cepko CL: A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987, 328: 131-136. 10.1038/328131a0.
Article
CAS
PubMed
Google Scholar
Holt CE, Bertsch TW, Ellis HM, Harris WA: Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron. 1988, 1: 15-26. 10.1016/0896-6273(88)90205-X.
Article
CAS
PubMed
Google Scholar
Wetts R, Fraser SE: Multipotent precursors can give rise to all major cell types of the frog retina. Science. 1988, 239: 1142-1145. 10.1126/science.2449732.
Article
CAS
PubMed
Google Scholar
Turner DL, Snyder EY, Cepko CL: Lineage-independent determination of cell type in the embryonic mouse retina. Neuron. 1990, 4: 833-845. 10.1016/0896-6273(90)90136-4.
Article
CAS
PubMed
Google Scholar
Vetter ML, Brown NL: The role of basic helix-loop-helix genes in vertebrate retinogenesis. Semin Cell Dev Biol. 2001, 12: 491-498. 10.1006/scdb.2001.0273.
Article
CAS
PubMed
Google Scholar
Furukawa T, Morrow EM, Cepko CL: Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell. 1997, 91: 531-541. 10.1016/S0092-8674(00)80439-0.
Article
CAS
PubMed
Google Scholar
Ohsawa R, Kageyama R: Regulation of retinal cell fate specification by multiple transcription factors. Brain Res. 2008, 1192: 90-98. 10.1016/j.brainres.2007.04.014.
Article
CAS
PubMed
Google Scholar
Le TT, Wroblewski E, Patel S, Riesenberg AN, Brown NL: Math5 is required for both early retinal neuron differentiation and cell cycle progression. Dev Biol. 2006, 295: 764-778. 10.1016/j.ydbio.2006.03.055.
Article
CAS
PubMed
Google Scholar
Mu X, Fu X, Sun H, Liang S, Maeda H, Frishman LJ, Klein WH: Ganglion Cells Are Required for Normal Progenitor-Cell Proliferation but Not Cell-Fate Determination or Patterning in the Developing Mouse Retina. Current Biology. 2005, 15: 525-530. 10.1016/j.cub.2005.01.043.
Article
CAS
PubMed
Google Scholar
Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T: Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development. 1998, 125: 4821-4833.
CAS
PubMed
Google Scholar
Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L: Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 2001, 15: 24-29. 10.1101/gad.855301.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schwenk FB, Udo , Rajewsky , Klaus : A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Research. 1995, 23: 5080-5081. 10.1093/nar/23.24.5080.
Article
PubMed Central
CAS
PubMed
Google Scholar
Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999, 21: 70-71. 10.1038/5007.
Article
CAS
PubMed
Google Scholar
Zinyk DL, Mercer EH, Harris E, Anderson DJ, Joyner AL: Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Current Biology. 1998, 8: 665-672. 10.1016/S0960-9822(98)70255-6.
Article
CAS
PubMed
Google Scholar
Novak A, Guo C, Yang W, Nagy A, Lobe CG: Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. genesis. 2000, 28: 147-155. 10.1002/1526-968X(200011/12)28:3/4<147::AID-GENE90>3.0.CO;2-G.
Article
CAS
PubMed
Google Scholar
Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J: The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci. 1995, 15: 4762-4785.
CAS
PubMed
Google Scholar
Haverkamp S, Wässle H: Immunocytochemical analysis of the mouse retina. The Journal of Comparative Neurology. 2000, 424: 1-23. 10.1002/1096-9861(20000814)424:1<1::AID-CNE1>3.0.CO;2-V.
Article
CAS
PubMed
Google Scholar
Gabriel R, Witkovsky P: Cholinergic, but not the rod pathway-related glycinergic (AII), amacrine cells contain calretinin in the rat retina. Neuroscience Letters. 1998, 247: 179-182. 10.1016/S0304-3940(98)00323-1.
Article
CAS
PubMed
Google Scholar
Araki CM, Hamassaki-Britto DE: Calretinin co-localizes with the NMDA receptor subunit NR1 in cholinergic amacrine cells of the rat retina. Brain Research. 2000, 869: 220-224. 10.1016/S0006-8993(00)02364-7.
Article
CAS
PubMed
Google Scholar
Ding Q, Chen H, Xie X, Libby RT, Tian N, Gan L: BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons. J Neurosci. 2009, 29: 3992-4003. 10.1523/JNEUROSCI.5237-08.2009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu ISC, Chen J-d, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, Mclnnes RR: Developmental expression of a novel murine homeobox gene (Chx10): Evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron. 1994, 13: 377-393. 10.1016/0896-6273(94)90354-9.
Article
CAS
PubMed
Google Scholar
Dkhissi O, Julien J-F, Wasowicz M, Jeanine Nguyen-Legros ND-T, Versaux-Botteri C: Differential expression of GAD65 and GAD67 during the development of the rat retina. Brain Research. 2001, 919: 242-249. 10.1016/S0006-8993(01)03022-0.
Article
CAS
PubMed
Google Scholar
Galli-Resta L, Resta G, Tan S-S, Reese BE: Mosaics of Islet-1-Expressing Amacrine Cells Assembled by Short-Range Cellular Interactions. J Neurosci. 1997, 17: 7831-7838.
CAS
PubMed
Google Scholar
Haverkamp S, Haeseleer F, Hendrickson A: A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Visual Neuroscience. 2003, 20: 589-600. 10.1017/S0952523803206015.
Article
PubMed
Google Scholar
Elshatory Y, Deng M, Xie X, Gan L: Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol. 2007, 503: 182-197. 10.1002/cne.21390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kubbutat MH, Key G, Duchrow M, Schluter C, Flad HD, Gerdes J: Epitope analysis of antibodies recognising the cell proliferation associated nuclear antigen previously defined by the antibody Ki-67 (Ki-67 protein). J Clin Pathol. 1994, 47: 524-528. 10.1136/jcp.47.6.524.
Article
PubMed Central
CAS
PubMed
Google Scholar
Swain PK, Hicks D, Mears AJ, Apel IJ, Smith JE, John SK, Hendrickson A, Milam AH, Swaroop A: Multiple Phosphorylated Isoforms of NRL Are Expressed in Rod Photoreceptors. J Biol Chem. 2001, 276: 36824-36830. 10.1074/jbc.M105855200.
Article
CAS
PubMed
Google Scholar
Dyer MA, Cepko CL: Control of Müller glial cell proliferation and activation following retinal injury. 2000, 3: 873-880.
CAS
Google Scholar
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P: Pax6 Is Required for the Multipotent State of Retinal Progenitor Cells. Cell. 2001, 105: 43-55. 10.1016/S0092-8674(01)00295-1.
Article
CAS
PubMed
Google Scholar
de Melo J, Qiu X, Du G, Cristante L, Eisenstat DD: Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina. The Journal of Comparative Neurology. 2003, 461: 187-204. 10.1002/cne.10674.
Article
CAS
PubMed
Google Scholar
Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L: Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci. 2007, 27: 12707-12720. 10.1523/JNEUROSCI.3951-07.2007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dyer MA, Livesey FJ, Cepko CL, Oliver G: Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. 2003, 34: 53-58.
CAS
Google Scholar
Haverkamp S, Ghosh KK, Hirano AA, Wässle H: Immunocytochemical description of five bipolar cell types of the mouse retina. The Journal of Comparative Neurology. 2003, 455: 463-476. 10.1002/cne.10491.
Article
PubMed Central
PubMed
Google Scholar
Zhao X, Huang J, Khani SC, Palczewski K: Molecular Forms of Human Rhodopsin Kinase (GRK1). J Biol Chem. 1998, 273: 5124-5131. 10.1074/jbc.273.9.5124.
Article
CAS
PubMed
Google Scholar
Roberts MR, Hendrickson A, McGuire CR, Reh TA: Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Investigative Ophthalmology & Visual Science. 2005, 46: 2897-2904.
Article
Google Scholar
Chow RL, Snow B, Novak J, Looser J, Freund C, Vidgen D, Ploder L, McInnes RR: Vsx1, a rapidly evolving paired-like homeobox gene expressed in cone bipolar cells. Mechanisms of Development. 2001, 109: 315-322. 10.1016/S0925-4773(01)00585-8.
Article
CAS
PubMed
Google Scholar
Chow RL, Volgyi B, Szilard RK, Ng D, McKerlie C, Bloomfield SA, Birch DG, McInnes RR: Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. PNAS. 2004, 101: 1754-1759. 10.1073/pnas.0306520101.
Article
PubMed Central
CAS
PubMed
Google Scholar