Zarelli VE, Dawid IB. Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc Natl Acad Sci U S A. 2013;110(8):2870–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rada-Iglesias A, Bajpai R, Prescott S, Brugmann SA, Swigut T, Wysocka J. Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell. 2012;11(5):633–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Otterloo E, Li W, Garnett A, Cattell M, Medeiros DM, Cornell RA. Novel Tfap2-mediated control of soxE expression facilitated the evolutionary emergence of the neural crest. Development. 2012;139(4):720–30.
Article
PubMed
PubMed Central
Google Scholar
Schmidt M, Huber L, Majdazari A, Schutz G, Williams T, Rohrer H. The transcription factors AP-2beta and AP-2alpha are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol. 2011;355(1):89–100.
Article
CAS
PubMed
Google Scholar
Kousa YA, Schutte BC. Toward an orofacial gene regulatory network. Dev Dyn. 2016;245(3):220–32.
Article
CAS
PubMed
Google Scholar
Nilsson KW, Sjoberg RL, Leppert J, Oreland L, Damberg M. Transcription factor AP-2 beta genotype and psychosocial adversity in relation to adolescent depressive symptomatology. J Neural Transm (Vienna). 2009;116(3):363–70.
Article
CAS
Google Scholar
Damberg M, Berggard C, Mattila-Evenden M, Rylander G, Forslund K, Garpenstrand H, Gustavsson JP, Jonsson EG. Transcription factor AP-2beta genotype associated with anxiety-related personality traits in women. A replication study. Neuropsychobiology. 2003;48(4):169–75.
Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature. 1996;381(6579):235–8.
Article
CAS
PubMed
Google Scholar
Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemore J, Plehn-Dujowich D, McMahon AP, Flavell RA, Williams T. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature. 1996;381(6579):238–41.
Article
CAS
PubMed
Google Scholar
Moser M, Pscherer A, Roth C, Becker J, Mucher G, Zerres K, Dixkens C, Weis J, Guay-Woodford L, Buettner R. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta. Genes Dev. 1997;11(15):1938–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y, Kang UJ, Yoo SH, Buettner R, Kim, KS. Transcription factor AP-2beta regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci. 2011;46(1):245–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auman HJ, Nottoli T, Lakiza O, Winger Q, Donaldson S, Williams T. Transcription factor AP-2gamma is essential in the extra-embryonic lineages for early postimplantation development. Development. 2002;129(11):2733–47.
CAS
PubMed
Google Scholar
Werling U, Schorle H. Transcription factor gene AP-2 gamma essential for early murine development. Mol Cell Biol. 2002;22(9):3149–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M. Induction of mouse germ-cell fate by transcription factors in vitro. Nature. 2013;501(7466):222–6.
Article
CAS
PubMed
Google Scholar
Feng W, Simoes-de-Souza F, Finger TE, Restrepo D, Williams T. Disorganized olfactory bulb lamination in mice deficient for transcription factor AP-2epsilon. Mol Cell Neurosci. 2009;42(3):161–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckert D, Buhl S, Weber S, Jager R, Schorle H. The AP-2 family of transcription factors. Genome Biol. 2005;6(13):246.
Article
PubMed
PubMed Central
Google Scholar
Zhao F, Lufkin T, Gelb BD. Expression of Tfap2d, the gene encoding the transcription factor Ap-2 delta, during mouse embryogenesis. Gene Expr Patterns. 2003;3(2):213–7.
Article
CAS
PubMed
Google Scholar
Hesse K, Vaupel K, Kurt S, Buettner R, Kirfel J, Moser M. AP-2delta is a crucial transcriptional regulator of the posterior midbrain. PLoS One. 2011;6(8):e23483.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bassett EA, Korol A, Deschamps PA, Buettner R, Wallace VA, Williams T, West-Mays, JA. Overlapping expression patterns and redundant roles for AP-2 transcription factors in the developing mammalian retina. Dev Dyn. 2012;241(4):814–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bisgrove DA, Godbout R. Differential expression of AP-2alpha and AP-2beta in the developing chick retina: repression of R-FABP promoter activity by AP-2. Dev Dyn. 1999;214(3):195–206.
Article
CAS
PubMed
Google Scholar
Bassett EA, Pontoriero GF, Feng W, Marquardt T, Fini ME, Williams T, West-Mays, JA. Conditional deletion of activating protein 2alpha (AP-2alpha) in the developing retina demonstrates non-cell-autonomous roles for AP-2alpha in optic cup development. Mol Cell Biol. 2007;27(21):7497–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Glubrecht DD, Mita R, Godbout R. Expression of AP-2delta in the developing chick retina. Dev Dyn. 2008;237(11):3210–21.
Article
CAS
PubMed
Google Scholar
Li X, Monckton EA, Godbout R. Ectopic expression of transcription factor AP-2delta in developing retina: effect on PSA-NCAM and axon routing. J Neurochem. 2014;129(1):72–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Persad AR, Monckton EA, Godbout R. Transcription factor AP-2delta regulates the expression of polysialyltransferase ST8SIA2 in chick retina. FEBS Lett. 2014;588(5):770–5.
Article
CAS
PubMed
Google Scholar
Tan CC, Walsh MJ, Gelb BD. Fgfr3 is a transcriptional target of Ap2delta and Ash2l-containing histone methyltransferase complexes. PLoS One. 2009;4(12):e8535.
Article
PubMed
PubMed Central
Google Scholar
Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci. 1995;15(7 Pt 1):4762–85.
CAS
PubMed
Google Scholar
Badea TC, Cahill H, Ecker J, Hattar S, Nathans J. Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron. 2009;61(6):852–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drager UC, Olsen JF. Ganglion cell distribution in the retina of the mouse. Invest Ophthalmol Vis Sci. 1981;20(3):285–93.
CAS
PubMed
Google Scholar
Pang JJ, Wu SM. Morphology and immunoreactivity of retrogradely double-labeled ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci. 2011;52(7):4886–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain. 2015;8:28.
Article
PubMed
PubMed Central
Google Scholar
Wang SW, Mu X, Bowers WJ, Kim DS, Plas DJ, Crair MC, Federoff HJ, Gan L, Klein WH. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development. 2002;129(2):467–77.
CAS
PubMed
Google Scholar
Badea TC, Nathans J. Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Res. 2011;51(2):269–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schlamp CL, Montgomery AD, Mac Nair CE, Schuart C, Willmer DJ, Nickells RW. Evaluation of the percentage of ganglion cells in the ganglion cell layer of the rodent retina. Mol Vis. 2013;19:1387–96.
CAS
PubMed
PubMed Central
Google Scholar
Galindo-Romero C, Aviles-Trigueros M, Jimenez-Lopez M, Valiente-Soriano FJ, Salinas-Navarro M, Nadal-Nicolas F, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M. Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp Eye Res. 2011;92(5):377–87.
Article
CAS
PubMed
Google Scholar
Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci. 2008;31:295–315.
Article
CAS
PubMed
Google Scholar
Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916(1–2):172–91.
Article
CAS
PubMed
Google Scholar
Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol. 2006;497(3):326–49.
Article
PubMed
PubMed Central
Google Scholar
Morin LP, Allen CN. The circadian visual system, 2005. Brain Res Rev. 2006;51(1):1–60.
Article
CAS
PubMed
Google Scholar
Morin LP, Studholme KM. Retinofugal projections in the mouse. J Comp Neurol. 2014;522(16):3733–53.
Article
PubMed
PubMed Central
Google Scholar
May PJ. The mammalian superior colliculus: laminar structure and connections. Prog Brain Res. 2006;151:321–78.
Article
PubMed
Google Scholar
Hofbauer A, Drager UC. Depth segregation of retinal ganglion cells projecting to mouse superior colliculus. J Comp Neurol. 1985;234(4):465–74.
Article
CAS
PubMed
Google Scholar
Haustead DJ, Lukehurst SS, Clutton GT, Bartlett CA, Dunlop SA, Arrese CA, et al. Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A−/− mice. J Neurosci. 2008;28(29):7376–86.
Rodger J, Frost DO. Effects of trkB knockout on topography and ocular segregation of uncrossed retinal projections. Exp Brain Res. 2009;195(1):35–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang M. Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev Biol. 1998;197(2):155–69.
Article
CAS
PubMed
Google Scholar
Pan L, Yang Z, Feng L, Gan L. Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development. 2005;132(4):703–12.
Article
CAS
PubMed
Google Scholar
Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci U S A. 1996;93(9):3920–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, Keithley, EM, Rapaport DH, Ryan AF, Rosenfeld MG. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature. 1996;381(6583):603–6.
Article
CAS
PubMed
Google Scholar
Young RW. Cell death during differentiation of the retina in the mouse. J Comp Neurol. 1984;229(3):362–73.
Article
CAS
PubMed
Google Scholar
Vecino E, Hernandez M, Garcia M. Cell death in the developing vertebrate retina. Int J Dev Biol. 2004;48(8–9):965–74.
Article
CAS
PubMed
Google Scholar
Clough RL, Sud R, Davis-Silberman N, Hertzano R, Avraham KB, Holley M, Dawson SJ. Brn-3c (POU4F3) regulates BDNF and NT-3 promoter activity. Biochem Biophys Res Commun. 2004;324(1):372–81.
Article
CAS
PubMed
Google Scholar
Takahata K, Katsuki H, Kume T, Nakata D, Ito K, Muraoka S, Yoneda F, Kashii, S, Honda Y, Akaike A. Retinal neuronal death induced by intraocular administration of a nitric oxide donor and its rescue by neurotrophic factors in rats. Invest Ophthalmol Vis Sci. 2003;44(4):1760–6.
Article
PubMed
Google Scholar
Carpenter P, Sefton AJ, Dreher B, Lim WL. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus. J Comp Neurol. 1986;251(2):240–59.
Article
CAS
PubMed
Google Scholar
Wikler KC, Kirn J, Windrem MS, Finlay BL. Control of cell number in the developing visual system. II. Effects of partial tectal ablation. Brain Res. 1986;393(1):11–21.
Article
CAS
PubMed
Google Scholar
Harvey AR, Robertson D. Time-course and extent of retinal ganglion cell death following ablation of the superior colliculus in neonatal rats. J Comp Neurol. 1992;325(1):83–94.
Article
CAS
PubMed
Google Scholar
Pearson HE, Stoffler DJ. Retinal ganglion cell degeneration following loss of postsynaptic target neurons in the dorsal lateral geniculate nucleus of the adult cat. Exp Neurol. 1992;116(2):163–71.
Article
CAS
PubMed
Google Scholar
Perry VH, Cowey A. Changes in the retino-fugal pathways following cortical and tectal lesions in neonatal and adult rats. Exp Brain Res. 1979;35(1):97–108.
CAS
PubMed
Google Scholar
Perry VH, Cowey A. The effects of unilateral cortical and tectal lesions on retinal ganglion cells in rats. Exp Brain Res. 1979;35(1):85–95.
CAS
PubMed
Google Scholar
Badea TC, Williams J, Smallwood P, Shi M, Motajo O, Nathans J. Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis. J Neurosci. 2012;32(3):995–1007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Godement P, Salaun J, Imbert M. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol. 1984;230(4):552–75.
Article
CAS
PubMed
Google Scholar
Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K, Kamiji NL, Usui S, Noda M. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS One. 2009;4(1):e4320.
Article
PubMed
PubMed Central
Google Scholar
Bai WZ, Meguro R, Kaiya T, Norita M. Postnatal development of the retinal projection to the nucleus of the optic tract and accessory optic nuclei in the hooded rat. Arch Histol Cytol. 2001;64(1):69–79.
Article
CAS
PubMed
Google Scholar
Simon DK, O’Leary DD. Development of topographic order in the mammalian retinocollicular projection. J Neurosci. 1992;12(4):1212–32.
CAS
PubMed
Google Scholar
Dallimore EJ, Cui Q, Beazley LD, Harvey AR. Postnatal innervation of the rat superior colliculus by axons of late-born retinal ganglion cells. Eur J Neurosci. 2002;16(7):1295–304.
Article
PubMed
Google Scholar
Bunt SM, Lund RD, Land PW. Prenatal development of the optic projection in albino and hooded rats. Brain Res. 1983;282(2):149–68.
Article
CAS
PubMed
Google Scholar
Drager UC, Olsen JF. Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J Comp Neurol. 1980;191(3):383–412.
Article
CAS
PubMed
Google Scholar
Maiorano NA, Hindges R. Restricted perinatal retinal degeneration induces retina reshaping and correlated structural rearrangement of the retinotopic map. Nat Commun. 2013;4:1938.
Article
PubMed
PubMed Central
Google Scholar
Drager UC, Hubel DH. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol. 1975;38(3):690–713.
CAS
PubMed
Google Scholar
Jiang ZD, Moore DR, King AJ. Sources of subcortical projections to the superior colliculus in the ferret. Brain Res. 1997;755(2):279–92.
Article
CAS
PubMed
Google Scholar
Cooper AM, Cowey A. Development and retraction of a crossed retinal projection to the inferior colliculus in neonatal pigmented rats. Neuroscience. 1990;35(2):335–44.
Article
CAS
PubMed
Google Scholar
Adams JC. Crossed and descending projections to the inferior colliculus. Neurosci Lett. 1980;19(1):1–5.
Article
CAS
PubMed
Google Scholar
Doubell TP, Baron J, Skaliora I, King AJ. Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information. Eur J Neurosci. 2000;12(12):4290–308.
CAS
PubMed
Google Scholar
Cooper MH, Young PA. Cortical projections to the inferior colliculus of the cat. Exp Neurol. 1976;51(2):488–502.
Article
CAS
PubMed
Google Scholar
Stitt I, Galindo-Leon E, Pieper F, Hollensteiner KJ, Engler G, Engel AK. Auditory and visual interactions between the superior and inferior colliculi in the ferret. Eur J Neurosci. 2015;41(10):1311–20.
Article
PubMed
Google Scholar
Bramblett DE, Pennesi ME, Wu SM, Tsai MJ. The transcription factor Bhlhb4 is required for rod bipolar cell maturation. Neuron. 2004;43(6):779–93.
Article
CAS
PubMed
Google Scholar
Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol. 2004;555(Pt 1):153–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith BJ, Wang X, Chauhan BC, Cote PD, Tremblay F. Contribution of retinal ganglion cells to the mouse electroretinogram. Doc Ophthalmol. 2014;128(3):155–68.
Article
PubMed
Google Scholar
Ridder 3rd WH, Nusinowitz S. The visual evoked potential in the mouse--origins and response characteristics. Vision Res. 2006;46(6–7):902–13.
Article
PubMed
Google Scholar
Sugita S, Otani K, Tokunaga A, Terasawa K. Laminar origin of the tecto-thalamic projections in the albino rat. Neurosci Lett. 1983;43(2–3):143–7.
Article
CAS
PubMed
Google Scholar
Zagorul’ko TM, Khachatryan AV. Tectocortical connections in the rat visual system. Neurosci Behav Physiol. 1977;8(1):61–6.
Article
PubMed
Google Scholar
Perry VH. A tectocortical visual pathway in the rat. Neuroscience. 1980;5(5):915–27.
Article
CAS
PubMed
Google Scholar
Glubrecht DD, Kim JH, Russell L, Bamforth JS, Godbout R. Differential CRX and OTX2 expression in human retina and retinoblastoma. J Neurochem. 2009;111(1):250–63.
Article
CAS
PubMed
PubMed Central
Google Scholar