Freund TF, Buzsaki G: Interneurons of the hippocampus. Hippocampus. 1996, 6: 347-470.
Article
PubMed
Google Scholar
Klausberger T, Somogyi P: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008, 321: 53-57. 10.1126/science.1149381.
Article
PubMed
PubMed Central
Google Scholar
Somogyi P, Klausberger T: Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol (London). 2005, 562: 9-29. 10.1113/jphysiol.2004.078915.
Article
Google Scholar
Huguenard JR: Neuronal circuitry of thalamocortical epilepsy and mechanisms of antiabsence drug action. Adv Neurol. 1999, 79: 991-999.
PubMed
Google Scholar
Lee J, Woo J, Favorov OV, Tommerdahl M, Lee CJ, Whitsel BL: Columnar distribution of activity dependent gabaergic depolarization in sensorimotor cortical neurons. Mol Brain. 2012, 5: 33-10.1186/1756-6606-5-33.
Article
PubMed
PubMed Central
Google Scholar
McCormick DA, Contreras D: On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001, 63: 815-846. 10.1146/annurev.physiol.63.1.815.
Article
PubMed
Google Scholar
Prince DA: Epileptogenic neurons and circuits. Adv Neurol. 1999, 79: 665-684.
PubMed
Google Scholar
Benes FM, Berretta S: GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001, 25: 1-27. 10.1016/S0893-133X(01)00225-1.
Article
PubMed
Google Scholar
Maciag D, Hughes J, O’Dwyer G, Pride Y, Stockmeier CA, Sanacora G, Rajkowska G: Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry. 2010, 67: 465-470. 10.1016/j.biopsych.2009.10.027.
Article
PubMed
PubMed Central
Google Scholar
Zhang F, Liu B, Lei Z, Wang J: mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012, 5: 20-10.1186/1756-6606-5-20.
Article
PubMed
PubMed Central
Google Scholar
Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB: Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry. 2005, 57: 252-260. 10.1016/j.biopsych.2004.10.019.
Article
PubMed
Google Scholar
Caillard O, Ben-Ariand Y, Gaiarsa J-L: Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J Physiol (London). 1999, 518: 109-119. 10.1111/j.1469-7793.1999.0109r.x.
Article
Google Scholar
Houston CM, He Q, Smart TG: CaMKII phosphorylation of the GABA(A) receptor: receptor subtype- and synapse-specific modulation. J Physiol. 2009, 587: 2115-2125. 10.1113/jphysiol.2009.171603.
Article
PubMed
PubMed Central
Google Scholar
Poisbeau P, Cheney MC, Browning MD, Mody I: Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J Neurosci. 1999, 19: 674-683.
PubMed
Google Scholar
Wei J, Zhang M, Zhu Y, Wang JH: Ca2 + −calmodulin signalling pathway upregulates GABA synaptic transmission through cytoskeleton-mediated mechanisms. Neuroscience. 2004, 127: 637-647. 10.1016/j.neuroscience.2004.05.056.
Article
PubMed
Google Scholar
Chen N, Chen X, Wang J-H: Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci. 2008, 121: 2961-2971. 10.1242/jcs.022368.
Article
PubMed
Google Scholar
Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, Kullmann DM: Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science. 2007, 315: 1262-1266. 10.1126/science.1137450.
Article
PubMed
PubMed Central
Google Scholar
Wang J-H, Kelly PT: Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol (London). 2001, 533: 407-422. 10.1111/j.1469-7793.2001.0407a.x.
Article
Google Scholar
Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Luthi A: A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature. 2012, 480: 331-335.
Article
Google Scholar
Ni H, Huang L, Chen N, Zhang F, Liu D, Ge M, Guan S, Zhu Y, Wang JH: Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit. PLoS One. 2010, 5: e13736-10.1371/journal.pone.0013736.
Article
PubMed
PubMed Central
Google Scholar
Ye B, Huang L, Gao Z, Chen P, Ni H, Guan S, Zhu Y, Wang JH: The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs. PLoS One. 2012, 7: e41986-10.1371/journal.pone.0041986.
Article
PubMed
PubMed Central
Google Scholar
Krook-Magnuson E, Luu L, Lee SH, Varga C, Soltesz I: Ivy and neurogliaform interneurons are a major target of mu-opioid receptor modulation. J Neurosci. 2011, 31: 14861-14870. 10.1523/JNEUROSCI.2269-11.2011.
Article
PubMed
PubMed Central
Google Scholar
Sheffield ME, Best TK, Mensh BD, Kath WL, Spruston N: Slow integration leads to persistent action potential firing in distal axons of coupled interneurons. Nat Neurosci. 2011, 14: 200-207. 10.1038/nn.2728.
Article
PubMed
PubMed Central
Google Scholar
Aldrich RW, Corey DP, Stevens CF: A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983, 306: 436-441. 10.1038/306436a0.
Article
PubMed
Google Scholar
Khaliq ZM, Bean BP: Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci. 2010, 30: 7401-7413. 10.1523/JNEUROSCI.0143-10.2010.
Article
PubMed
PubMed Central
Google Scholar
Chen N, Zhu Y, Gao X, Guan S, Wang J-H: Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun. 2006, 346: 281-287. 10.1016/j.bbrc.2006.05.120.
Article
PubMed
Google Scholar
Goldman L: Stationarity of sodium channel gating kinetics in excised patches from neuroblastoma N1E 115. Biophys J. 1995, 69: 2364-2368. 10.1016/S0006-3495(95)80105-0.
Article
PubMed
PubMed Central
Google Scholar
Hodgkin AL, Huxley AF: Propagation of electrical signals along giant nerve fibers. Proc R Soc Lond B Biol Sci. 1952, 140: 177-183. 10.1098/rspb.1952.0054.
Article
PubMed
Google Scholar
Huxley AF, Stampfli R: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol. 1949, 108: 315-339.
Article
PubMed Central
Google Scholar
Sheffield ME, Edgerton GB, Heuermann RJ, Deemyad T, Mensh BD, Spruston N: Mechanisms of retroaxonal barrage firing in hippocampal interneurons. J Physiol. 2013, 591: 4793-4805. 10.1113/jphysiol.2013.258418.
Article
PubMed
PubMed Central
Google Scholar
Ge R, Chen N, Wang JH: Real-time neuronal homeostasis by coordinating VGSC intrinsic properties. Biochem Biophys Res Commun. 2009, 387: 585-589. 10.1016/j.bbrc.2009.07.066.
Article
PubMed
Google Scholar
McCormick DA, Shu Y, Yu Y: Neurophysiology: Hodgkin and Huxley model–still standing?. Nature. 2007, 445: E1-E2. 10.1038/nature05523. discussion E2-3
Article
PubMed
Google Scholar
Naundorf B, Wolf F, Volgushev M: Unique features of action potential initiation in cortical neurons. Nature. 2006, 440: 1060-1063. 10.1038/nature04610.
Article
PubMed
Google Scholar
Chen N, Yu J, Qian H, Ge R, Wang JH: Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS One. 2010, 5 (7): e11868-10.1371/journal.pone.0011868.
Article
PubMed
PubMed Central
Google Scholar
Ge R, Qian H, Chen N, Wang JH: Input-dependent subcellular localization of spike initiation between soma and axon at cortical pyramidal neurons. Mol Brain. 2014, 7: 26-10.1186/1756-6606-7-26.
Article
PubMed
PubMed Central
Google Scholar
Rathmayer W: Anemone toxin discriminates between ionic channels for receptor potential and for action potential production in a sensory neuron. Neurosci Lett. 1979, 13: 313-318. 10.1016/0304-3940(79)91512-X.
Article
PubMed
Google Scholar
Chen N, Chen X, Yu J, Wang J-H: After-hyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun. 2006, 346: 938-945. 10.1016/j.bbrc.2006.06.003.
Article
PubMed
Google Scholar
Theile JW, Cummins TR: Inhibition of Navbeta4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. Mol Pharmacol. 2011, 80: 724-734. 10.1124/mol.111.072751.
Article
PubMed
PubMed Central
Google Scholar
Ashpole NM, Herren AW, Ginsburg KS, Brogan JD, Johnson DE, Cummins TR, Bers DM, Hudmon A: Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites. J Biol Chem. 2012, 287: 19856-19869. 10.1074/jbc.M111.322537.
Article
PubMed
PubMed Central
Google Scholar
Hourez R, Azdad K, Vanwalleghem G, Roussel C, Gall D, Schiffmann SN: Activation of protein kinase C and inositol 1,4,5-triphosphate receptors antagonistically modulate voltage-gated sodium channels in striatal neurons. Brain Res. 2005, 1059: 189-196. 10.1016/j.brainres.2005.08.031.
Article
PubMed
Google Scholar
Kato K, Iwamoto T, Kida S: Interactions between alphaCaMKII and calmodulin in living cells: conformational changes arising from CaM-dependent and -independent relationships. Mol Brain. 2013, 6: 37-10.1186/1756-6606-6-37.
Article
PubMed
PubMed Central
Google Scholar
Sanhueza M, Lisman J: The CaMKII/NMDAR complex as a molecular memory. Mol Brain. 2013, 6: 10-10.1186/1756-6606-6-10.
Article
PubMed
PubMed Central
Google Scholar
Vijayaragavan K, Boutjdir M, Chahine M: Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol. 2004, 91: 1556-1569. 10.1152/jn.00676.2003.
Article
PubMed
Google Scholar
Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T: Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol. 2003, 467: 60-79. 10.1002/cne.10905.
Article
PubMed
Google Scholar
Ohira K, Takeuchi R, Iwanaga T, Miyakawa T: Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice. Mol Brain. 2013, 6: 43-10.1186/1756-6606-6-43.
Article
PubMed
PubMed Central
Google Scholar
Ono M, Yanagawa Y, Koyano K: GABAergic neurons in inferior colliculus of the GAD67-GFP knock-in mouse: electrophysiological and morphological properties. Neurosci Res. 2005, 51: 475-492. 10.1016/j.neures.2004.12.019.
Article
PubMed
Google Scholar
Ge R, Qian H, Wang JH: Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain. 2011, 4: 19-10.1186/1756-6606-4-19.
Article
PubMed
PubMed Central
Google Scholar
Wang J-H: Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Res Bull. 2003, 60: 53-58. 10.1016/S0361-9230(03)00026-1.
Article
PubMed
Google Scholar
Yu J, Qian H, Chen N, Wang JH: Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS One. 2011, 6: e25219-10.1371/journal.pone.0025219.
Article
PubMed
PubMed Central
Google Scholar
Yu J, Qian H, Wang JH: Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Mol Brain. 2012, 5: 26-10.1186/1756-6606-5-26.
Article
PubMed
PubMed Central
Google Scholar
Maccaferri G, Lacaille JC: Interneuron Diversity series: Hippocampal interneuron classifications–making things as simple as possible, not simpler. Trends Neurosci. 2003, 26: 564-571. 10.1016/j.tins.2003.08.002.
Article
PubMed
Google Scholar
McKay BE, Turner RW: Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol (London). 2005, 567 (Pt3): 829-850.
Article
Google Scholar
Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J: The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008, 121: 2951-2960. 10.1242/jcs.025684.
Article
PubMed
Google Scholar
Wehr M, Zador AM: Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature. 2003, 426: 442-446. 10.1038/nature02116.
Article
PubMed
Google Scholar
Yang Z, Wang JH: Frequency-Dependent Reliability of Spike Propagation Is Function of Axonal Voltage-Gated Sodium Channels in Cerebellar Purkinje Cells. Cerebellum. 2013, 12 (6): 862-869. 10.1007/s12311-013-0499-2.
Article
PubMed
Google Scholar
Chen N, Chen SL, Wu YL, Wang JH: The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun. 2006, 340: 151-157. 10.1016/j.bbrc.2005.11.170.
Article
PubMed
Google Scholar
Berecki G, Wilders R, de Jonge B, van Ginneken AC, Verkerk AO: Re-evaluation of the action potential upstroke velocity as a measure of the Na + current in cardiac myocytes at physiological conditions. PLoS One. 2010, 5: e15772-10.1371/journal.pone.0015772.
Article
PubMed
PubMed Central
Google Scholar
Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN, Wilders R, van Roon MA, Tan HL, Wilde AA, Carmeliet P, de Bakker JM, Veldkamp MW, Bezzina CR: Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation. 2006, 114: 2584-2594. 10.1161/CIRCULATIONAHA.106.653949.
Article
PubMed
Google Scholar
Yang Z, Gu E, Lu X, Wang JH: Essential role of axonal VGSC inactivation in time-dependent deceleration and unreliability of spike propagation at cerebellar Purkinje cells. Mol Brain. 2014, 7: 1-10.1186/1756-6606-7-1.
Article
PubMed
PubMed Central
Google Scholar
Zhao J, Wang D, Wang JH: Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Mol Brain. 2012, 5: 12-10.1186/1756-6606-5-12.
Article
PubMed
PubMed Central
Google Scholar